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Abstract:- This paper shows how to use blind deconvolution to deblur images. The algorithm of blind deconvolution can be 

employed efficiently if no information about the noise and blurring is obtained. This algorithm retains the picture or image and the 

point-spread function (PSF) at the same time. In each iteration, the accelerated Richardson-Lucy algorithm is applied. The 

characteristics of additional optical system like camera can be employed as input parameters to enhance the quality of the image 

restoration. PSF constraints can be passed in through a user-specified function. The concept of deconvolution can be applied 

efficiently when constraints are applied on the recovered image and limited information is obtained about the additive noise. The 

noisy and blurred noisy image is retained by a least square restoration algorithm that employs a regularized filter. Wiener 

deconvolution can be useful when the point-spread function and noise level are either known or estimated.The simulation process is 

carried out by Matlab2015R to check the functionality. 
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I. INTRODUCTION  

  
 To deblur an image, we proposed Blind 

Deconvolution algorithm, Lucy-Richardson algorithm and 

Regularized deconvolution, Wiener deconvolution can be 

used effectively. The algorithms are maximizes the 

likelihood that the resulting image, when convolved with 

the resulting PSF, is an instance of the blurred image, 

assuming Poisson noise statistics. The blind deconvolution 

algorithm can be used effectively when no information 

about the distortion (blurring and noise) is known. The 

deconvblind function restores the image and the PSF 

simultaneously, using an iterative process similar to the 

accelerated, damped Lucy- 

 

Richardson algorithm. 

 The deconvblind function, just like the 

deconvlucy function, implements several adaptations to 

the original Lucy-Richardson maximum likelihood 

algorithm that address complex image restoration tasks. 

Using these adaptations, you can 

 

 Reduce the effect of noise on the restoration 

 Account for nonuniform image quality (e.g., bad 

pixels) 

 Handle camera read-out noise 

  

 

 

Causes of Blurring 

The blurring, or degradation, of an image can be caused by 

many factors: 

 Movement during the image capture process, by 

the camera or, when long exposure times are used, 

by the subject. 

 Out-of-focus optics, use of a wide-angle lens, 

atmospheric turbulence, or a short exposure time, 

which reduces the number of photons captured 

 Scatteredlightdistortioninconfocal Microscopy. 

 

Deblurring Model 

A   blurred   or   degraded   image   can   be approximately 

described by this  equation g = Hf + n, where 

g = The blurred image 

H= The distortion operator, also called the point spread 

function (PSF) 

F= The original true image 

n= Additive noise, introduced during image acquisition, 

that corrupts the image. 

 

Importance of the PSF 

 Based on this model, the fundamental task of 

deblurring is to deconvolve the blurred image with the PSF 

that exactly describes the distortion. Deconvolution is the 

process of reversing the effect of convolution. The quality 

of the deblurred image is mainly determined by knowledge 

of the PSF. 
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II. ALGORITHM BASED APPROACH 

 

A.   Deblurring with the Blind Deconvolution Algorithm 

Step 1: Read the input Image. 

Step 2: Simulate a Blur model. 

Step 3: Restore the Blurred Image Using PSFs of Various 

Sizes. 

Step 4: Analyzing the Restored PSF. 

Step 5: Improving the Restoration. 

Step 6: Using Additional Constraints on the PSF 

Restoration. 

 

 The algorithm maximizes the likelihood that the 

resulting image, when convolved with the resulting PSF, is 

an instance of the blurred image, assuming Poisson noise 

statistics. The blind deconvolution algorithm can be used 

effectively when no information about the distortion 

(blurring and noise) is known. The deconvblind function 

restores the image and the PSF simultaneously, using an 

iterative process similar to the accelerated, damped Lucy-

Richardson algorithm. 

 

 The deconvblind function, just like the 

deconvlucy function, implements several adaptations to the 

original Lucy-Richardson maximum likelihood algorithm 

that address complex image restoration tasks. Using these 

adaptations, you can 

 Reduce the effect of noise on the restoration 

 Account for nonuniform image quality (e.g., bad 

pixels) 

 Handle camera read-out noise 

 

Step 1: Read Image 

 The example reads in an intensity image. The 

deconvblind function can handle arrays of any dimension. 

 

 
Step 2: Simulate a Blur 

 Simulate a real-life image that could be blurred 

(e.g., due to camera motion or lack of focus). The example 

simulates the blur by convolving a Gaussian filter with the 

true image (usingimfilter). The Gaussian filter then 

represents a point-spread function, PSF. 

Step 3: Restore the Blurred Image Using PSFs of 

Various Sizes 

 To illustrate the importance of knowing the size 

of the true PSF, this example performs three restorations. 

Each time the PSF reconstruction starts from a uniform 

array--an array of ones. 

 The first restoration, J1 and P1, uses an 

undersized array, UNDERPSF, for an initial guess of the 

PSF. The size of the UNDERPSF array is 4 pixels shorter 

in each dimension than the true PSF. 

The second restoration, J2 and P2, uses an array of ones, 

OVERPSF, for an initial PSF that is 4 pixels longer in each 

dimension than the true PSF. 

 The third restoration, J3 and P3, uses an array of 

ones, INITPSF, for an initial PSF that is exactly of the 

same size as the true PSF. 

 

 
 

Step 4: Analyzing the Restored PSF 

 All three restorations also produce a PSF. The 

following pictures show how the analysis of the 

reconstructed PSF might help in guessing the right size for 

the initial PSF. In the true PSF, a Gaussian filter, the 

maximum values are at the center (white) and diminish at 

the borders (black). 

 
 The PSF reconstructed in the first restoration, P1, 

obviously does not fit into the constrained size. It has a 

strong signal variation at the borders. The corresponding 

image, J1, does not show any improved clarity vs. the 

blurred image, Blurred. 

 

 The PSF reconstructed in the second restoration, 

P2, becomes very smooth at the edges. This implies that 

the restoration can handle a PSF of a smaller size. The 

corresponding image,J2, shows some deblurring but it is 

strongly corrupted by the ringing. 



 

 

ISSN (Online) 2394-2320 

International Journal of Engineering Research in Computer Science and Engineering (IJERCSE)  

Special Issue 
National Conference on "Recent Trends, Advancement and Applications of Digital Image Processing" (NCDIP 2016) 

  

 

 All Rights Reserved © 2017 IJERCSE                             22                   

 Finally, the PSF reconstructed in the third 

restoration, P3, is somewhat intermediate between P1 and 

P2. The array, P3, resembles the true PSF very well. The 

corresponding image, J3, shows significant improvement; 

however it is still corrupted by the ringing. 

 

Step 5: Improving the Restoration 

 The ringing in the restored image, J3, occurs 

along the areas of sharp intensity contrast in the image and 

along the image borders. This example shows how to 

reduce the ringing effect by specifying a weighting 

function. The algorithm weights each pixel according to 

the WEIGHT array while restoring the image and the PSF. 

In our example, we start by finding the "sharp" pixels using 

the edge function. By trial and error, we determine that a 

desirable threshold level is 0.3. 

 

 
 The image is restored by calling deconvblind with 

the WEIGHT array and an increased number of iterations 

(30). Almost all the ringing is suppressed.[7] 

 

Step 6: Using Additional Constraints on the PSF 

Restoration 

 The results shows how you can specify additional 

constraints on the PSF. The function, FUN, below returns a 

modified PSF array which deconvblind uses for the next 

iteration. 

 

 In this approach, FUN modifies the PSF by 

cropping it by P1 and P2 number of pixels in each 

dimension, and then padding the array back to its original 

size with zeros. This operation does not change the values 

in the center of the PSF, but effectively reduces the 

PSF size by 2*P1 and 2*P2 pixels. 

 

B. Deblurring Images Using the Lucy-Richardson 

Algorithm 

Step 1: Read the input Image  

Step 2: Simulate a Blur and Noise 

Step 3: Restore the Blurred and Noisy Image 

Step 4: Iterate to Explore the Restoration 

 

Step 5: Control Noise Amplification by Damping  

Step 6: Create Sample Image 

Step 7: Simulate a Blur 

Step 8: Provide the WEIGHT Array  

Step 9: Provide a finer-sampled PSF 

 

 Lucy – Richardson Algorithm can be used 

effectively when the point-spread function PSF (blurring 

operator) is known, but little or no information is available 

for the noise. The blurred and noisy image is restored by 

the iterative, accelerated, damped Lucy-Richardson 

algorithm. The additional optical system (e.g. camera) 

characteristics can be used as input parameters to improve 

the quality of the image restoration.[1] 

 

Step 1: Read Image 

 The example reads in an RGB image and crops it 

to be 256-by-256-by-3. The deconvlucy function can 

handle arrays of any dimension.[2] 

 
Step 2: Simulate a Blur and Noise 

 
 Simulate a real-life image that could be blurred 

(e.g., due to camera motion or lack of focus) and noisy 

(e.g., due to random disturbances). The example simulates 

the blur by convolving a Gaussian filter with the true 

image (using imfilter). The Gaussian filter then represents 

a point-spread function, PSF. 

 

 The example simulates the noise by adding a 

Gaussian noise of variance V to the blurred image (using 

imnoise). The noise variance V is used later to define a 

damping parameter of the algorithm. 

 

Step 3: Restore the Blurred and Noisy Image 

 Restore the blurred and noisy image providing the 

PSF and using only 5 iterations (default is 10). The output 

is an array of the same type as the input image. 
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Step 4: Iterate to Explore the Restoration 

 The resulting image changes with each iteration. 

To investigate the evolution of the image restoration, you 

can do the deconvolution in steps: do a set of iterations, see 

the result, and then resume the iterations from where they 

were stopped. To do so, the input image has to be passed as 

a part of a cell array (e.g., start first set of iterations by 

passing in {BlurredNoisy}instead of BlurredNoisy as input 

image parameter).  

 

luc1_cell = deconvlucy({BlurredNoisy},PSF,5); In that 

case the output, luc1_cell, becomes a cell array. The cell 

output consists of four numeric arrays, where the first is 

the BlurredNoisy image, the second is the restored image 

of class double, the third array is the result of the one-

before-last iteration, and the fourth array is an internal 

parameter of the iterated set. The second numeric array of 

the output cell-array, image luc1_cell{2}, is identical to the 

output array of the Step 3, image luc1, with a possible 

exception of their class (the cell output always gives the 

restored image of class double). 

 

To resume the iterations, take the output from the previous 

function call, the cell-array luc1_cell, and pass it into the 

deconvlucy function. Use the default number of iterations 

(NUMIT = 10). The restored image is the result of a total 

of 15 iterations. 

 

 
 

Step 5: Control Noise Amplification by Damping 

 The latest image, luc2, is the result of 15 

iterations. Although it is sharper than the earlier result from 

5 iterations, the image develops a "speckled" appearance. 

The speckles do not correspond to any real structures 

(compare it to the true image), but instead are the result of 

fitting the noise in the data too closely. 

 

 To control the noise amplification, use the 

damping option by specifying the DAMPAR parameter. 

DAMPAR has to be of the same class as the input image. 

The algorithm dampens changes in the model in regions 

where the differences are small compared with the noise. 

 The DAMPAR used here equals 3 standard 

deviations of the noise. Notice that the image is smoother. 

 

 The next part of this example explores the 

WEIGHT and SUBSMPL input parameters of the 

deconvlucy function, using a simulated star image (for 

simplicity & speed). 

 

Step 6: Create Sample Image 

 

The example creates a black/white image of four stars. 

 
Step 7: Simulate a Blur 

  The example simulates a blur of the image of the 

stars by creating a Gaussian filter, PSF, and convolving it 

with the true image. Now simulate a camera that can only 

observe part of the stars' images (only the blur is seen). 

Create a weighting function array, WEIGHT, that consists 

of ones in the central part of the Blurred image ("good" 

pixels, located within the dashed lines) and zeros at the 

edges ("bad" pixels - those that do not receive the signal). 

To reduce the ringing associated with borders, apply the 

edgetaper function with the given PSF. 

 

Step 8: Provide the WEIGHT Array 

 The algorithm weights each pixel value according 

to the WEIGHT array while restoring the image. In our 

example, only the values of the central pixels are used 

(where WEIGHT = 1), while the "bad" pixel values are 

excluded from the optimization. However, the algorithm 

can place the signal power into the location of these "bad" 

pixels, beyond the edge of the camera's view. Notice the 

accuracy of the resolved star positions.[3] 

 
  The example reads in an RGB image and crops it 

to be 256-by-256-by-3. The deconvreg function can handle 

arrays of any dimension. 
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Step 2: Simulate a Blur and Noise 

 Simulate a real-life image that could be blurred 

(e.g., due to camera motion or lack of focus) and noisy 

(e.g., due to random disturbances). The example simulates 

the blur by convolving a Gaussian filter with the true 

image (using imfilter). The Gaussian filter represents a 

point-spread function, PSF.  

 

We simulate the noise by adding a Gaussian noise of 

variance V to the blurred image (using imnoise). 

 
Step 3: Restore the Blurred and Noisy Image 

 Restore the blurred and noisy image supplying 

noise power, NP, as the third input parameter. To illustrate 

how sensitive the algorithm is to the value of noise power, 

NP, the example performs three restorations. 

 

 The first restoration, reg1, uses the true NP. Note 

that the example outputs two parameters here. The first 

return value, reg1, is the restored image. The second return 

value, LAGRA, is a scalar, Lagrange multiplier, on which 

the deconvreg has converged. The second restoration, reg2, 

uses a slightly over-estimated noise power, which leads to 

a poor resolution.[4] 

 

 The third restoration, reg3, is given an under-

estimated NP value. This leads to an overwhelming noise 

amplification and "ringing" from the image borders. 

 

Step 4: Reduce Noise Amplification and Ringing 

 Reduce the noise amplification and "ringing" 

along the boundary of the image by calling the edgetaper 

function prior to deconvolution. Note how the image 

restoration becomes less sensitive to the noise power 

parameter. 

 
Step 5: Use the Lagrange Multiplier 

 Restore the blurred and noisy image, assuming 

that the optimal solution is already found and the 

corresponding Lagrange multiplier, LAGRA, is given. In 

this case, any value passed for noise power, NP, is ignored. 

 To illustrate how sensitive the algorithm is to the 

LAGRA value, the example performs three restorations. 

The first restoration (reg5) uses the LAGRA output from 

the earlier solution (LAGRA output from first solution in 

Step 3). 

 The second restoration (reg6) uses 100*LAGRA 

which increases the significance of the constraint. By 

default, this leads to over-smoothing of the image. 

 The third restoration uses LAGRA/100 which 

weakens the constraint (the smoothness requirement set for 

the image). It amplifies the noise and eventually leads to a 

pure inverse filtering for LAGRA = 0. 

 
Step 6: Use a Different Constraint 

 Restore the blurred and noisy image using a 

different constraint (REGOP) in the search for the optimal 

solution. Instead of constraining the image smoothness 

(REGOP is Laplacian by default), constrain the image 

smoothness only in one dimension (1-D Laplacian). 
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D. Deblurring Images Using a Wiener Filter 

Step1: Read Image 

Step2: Simulate a Motion Blur 

Step3: Restore the Blurred Image 

Step4: Simulate Blur and Noise 

Step5: Restore the Blurred and Noisy Image: First Attempt 

Step6: Restore the Blurred and Noisy Image: Second 

Attempt 

Step7: Simulate Blur and 8-Bit Quantization Noise 

Step8: Restore the Blurred, Quantized Image: First 

Attempt 

Step9: Restore the Blurred, Quantized Image: Second 

Attempt. 

 

Step1: Read Image 

 
Step2: Simulate a Motion Blur 

 Simulate a blurred image that you might get from 

camera motion. Create a point-spread function, PSF, 

corresponding to the linear motion across 31 pixels 

(LEN=31), at an angle of 11 degrees (THETA=11). To 

simulate the blur, convolve the filter with the image using 

imfilter. 

 

Step3: Restore the Blurred Image 

 The simplest syntax for deconvwnr is 

deconvwnr(A, PSF, NSR), where A is the blurred image, 

PSF is the point-spread function, and NSR is the noise-

power-to-signal-power ratio. The blurred image formed in 

Step 2 has no noise, so we'll use 0 for NSR.[5] 

 

Step4: Simulate Blur and Noise 

 Now let's try adding noise. 

 
 

 

 

 

Step5:  Restore  the  Blurred  and  Noisy  Image:  First 

Attempt. 

 In our first restoration attempt, we'll tell 

deconvwnr that there is no noise (NSR = 0). When NSR = 

0, the Wiener restoration filter is equivalent to an ideal 

inverse filter. The ideal inverse filter can be extremely 

sensitive to noise in the input image, as the next image 

shows: 

 The noise was amplified by the inverse filter to 

such a degree that only the barest hint of the man's shape is 

visible. 

 

Step6: Restore the Blurred and Noisy Image: Second 

Attempt 

 In our second attempt we supply an estimate of 

the noise-power-to-signal-power ratio. 

 
Step7: Simulate Blur and 8-Bit Quantization Noise 

 Even a visually imperceptible amount of noise can 

affect the result. Let's try keeping the input image in uint8 

representation instead of converting it to double. 

 

Step8:  Restore  the  Blurred,  Quantized  Image:  First 

Attempt 

 Again, we'll try first telling deconvwnr that there 

is no noise. 

 

Step9: Restore the Blurred, Quantized Image: Second 

Attempt. 

 Restore the Blurred, Quantized Image: Second 

Attempt. Next, we supply an NSR estimate to 

deconvwnr.[6] 

Restoration of Blurred, Quantized Image Using 

Computed NSR 
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III. CONCLUSION  
 

This paper describes how to use blind 

deconvolution and Damped Richardson-Lucy Algorithm 

to deblur images. And also Regularized deconvolution 

and Wiener deconvolution can be used effectively when 

constraints are applied on the recovered image and limited 

information is known about the additive noise. The 

blurred and noisy image is restored by a constrained least 

square restoration algorithm that uses a regularized filter. 

Wiener deconvolution can be useful when the point-

spread function and noise level are either known or 

estimated.The simulation results shows that the 

functionality of the above said deconvolution methods 

using algorithmic and filter based approaches. 
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