

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering (IJERCSE)

Special Issue
National Conference on "Recent Trends, Advancement and Applications of Digital Image Processing" (NCDIP 2016)

 All Rights Reserved © 2017 IJERCSE
20

Image Deblurring: A Matlab Based Approach Using

Algorithms and Filters

[1]
Dr.S. Omkumar,

[2]
M. Sivakumar,

[3]
Karthiga Mohan

[1]
Associate Professor,

[2]
Research Scholar,

[3]
UG Student,

Department of ECE, SCSVMV University, Kanchipuram

Abstract:- This paper shows how to use blind deconvolution to deblur images. The algorithm of blind deconvolution can be

employed efficiently if no information about the noise and blurring is obtained. This algorithm retains the picture or image and the

point-spread function (PSF) at the same time. In each iteration, the accelerated Richardson-Lucy algorithm is applied. The

characteristics of additional optical system like camera can be employed as input parameters to enhance the quality of the image

restoration. PSF constraints can be passed in through a user-specified function. The concept of deconvolution can be applied

efficiently when constraints are applied on the recovered image and limited information is obtained about the additive noise. The

noisy and blurred noisy image is retained by a least square restoration algorithm that employs a regularized filter. Wiener

deconvolution can be useful when the point-spread function and noise level are either known or estimated.The simulation process is

carried out by Matlab2015R to check the functionality.

Keywords: PSF, NSR, Binned Image, Quantized Image, Regularized Filter, Blind Deconvolution algorithm, least square restoration

algorithm.

I. INTRODUCTION

 To deblur an image, we proposed Blind

Deconvolution algorithm, Lucy-Richardson algorithm and

Regularized deconvolution, Wiener deconvolution can be

used effectively. The algorithms are maximizes the

likelihood that the resulting image, when convolved with

the resulting PSF, is an instance of the blurred image,

assuming Poisson noise statistics. The blind deconvolution

algorithm can be used effectively when no information

about the distortion (blurring and noise) is known. The

deconvblind function restores the image and the PSF

simultaneously, using an iterative process similar to the

accelerated, damped Lucy-

Richardson algorithm.

 The deconvblind function, just like the

deconvlucy function, implements several adaptations to

the original Lucy-Richardson maximum likelihood

algorithm that address complex image restoration tasks.

Using these adaptations, you can

 Reduce the effect of noise on the restoration

 Account for nonuniform image quality (e.g., bad

pixels)

 Handle camera read-out noise

Causes of Blurring

The blurring, or degradation, of an image can be caused by

many factors:

 Movement during the image capture process, by

the camera or, when long exposure times are used,

by the subject.

 Out-of-focus optics, use of a wide-angle lens,

atmospheric turbulence, or a short exposure time,

which reduces the number of photons captured

 Scatteredlightdistortioninconfocal Microscopy.

Deblurring Model

A blurred or degraded image can be approximately

described by this equation g = Hf + n, where

g = The blurred image

H= The distortion operator, also called the point spread

function (PSF)

F= The original true image

n= Additive noise, introduced during image acquisition,

that corrupts the image.

Importance of the PSF

 Based on this model, the fundamental task of

deblurring is to deconvolve the blurred image with the PSF

that exactly describes the distortion. Deconvolution is the

process of reversing the effect of convolution. The quality

of the deblurred image is mainly determined by knowledge

of the PSF.

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering (IJERCSE)

Special Issue
National Conference on "Recent Trends, Advancement and Applications of Digital Image Processing" (NCDIP 2016)

 All Rights Reserved © 2017 IJERCSE 21

II. ALGORITHM BASED APPROACH

A. Deblurring with the Blind Deconvolution Algorithm

Step 1: Read the input Image.

Step 2: Simulate a Blur model.

Step 3: Restore the Blurred Image Using PSFs of Various

Sizes.

Step 4: Analyzing the Restored PSF.

Step 5: Improving the Restoration.

Step 6: Using Additional Constraints on the PSF

Restoration.

 The algorithm maximizes the likelihood that the

resulting image, when convolved with the resulting PSF, is

an instance of the blurred image, assuming Poisson noise

statistics. The blind deconvolution algorithm can be used

effectively when no information about the distortion

(blurring and noise) is known. The deconvblind function

restores the image and the PSF simultaneously, using an

iterative process similar to the accelerated, damped Lucy-

Richardson algorithm.

 The deconvblind function, just like the

deconvlucy function, implements several adaptations to the

original Lucy-Richardson maximum likelihood algorithm

that address complex image restoration tasks. Using these

adaptations, you can

 Reduce the effect of noise on the restoration

 Account for nonuniform image quality (e.g., bad

pixels)

 Handle camera read-out noise

Step 1: Read Image

 The example reads in an intensity image. The

deconvblind function can handle arrays of any dimension.

Step 2: Simulate a Blur

 Simulate a real-life image that could be blurred

(e.g., due to camera motion or lack of focus). The example

simulates the blur by convolving a Gaussian filter with the

true image (usingimfilter). The Gaussian filter then

represents a point-spread function, PSF.

Step 3: Restore the Blurred Image Using PSFs of

Various Sizes

 To illustrate the importance of knowing the size

of the true PSF, this example performs three restorations.

Each time the PSF reconstruction starts from a uniform

array--an array of ones.

 The first restoration, J1 and P1, uses an

undersized array, UNDERPSF, for an initial guess of the

PSF. The size of the UNDERPSF array is 4 pixels shorter

in each dimension than the true PSF.

The second restoration, J2 and P2, uses an array of ones,

OVERPSF, for an initial PSF that is 4 pixels longer in each

dimension than the true PSF.

 The third restoration, J3 and P3, uses an array of

ones, INITPSF, for an initial PSF that is exactly of the

same size as the true PSF.

Step 4: Analyzing the Restored PSF

 All three restorations also produce a PSF. The

following pictures show how the analysis of the

reconstructed PSF might help in guessing the right size for

the initial PSF. In the true PSF, a Gaussian filter, the

maximum values are at the center (white) and diminish at

the borders (black).

 The PSF reconstructed in the first restoration, P1,

obviously does not fit into the constrained size. It has a

strong signal variation at the borders. The corresponding

image, J1, does not show any improved clarity vs. the

blurred image, Blurred.

 The PSF reconstructed in the second restoration,

P2, becomes very smooth at the edges. This implies that

the restoration can handle a PSF of a smaller size. The

corresponding image,J2, shows some deblurring but it is

strongly corrupted by the ringing.

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering (IJERCSE)

Special Issue
National Conference on "Recent Trends, Advancement and Applications of Digital Image Processing" (NCDIP 2016)

 All Rights Reserved © 2017 IJERCSE 22

 Finally, the PSF reconstructed in the third

restoration, P3, is somewhat intermediate between P1 and

P2. The array, P3, resembles the true PSF very well. The

corresponding image, J3, shows significant improvement;

however it is still corrupted by the ringing.

Step 5: Improving the Restoration

 The ringing in the restored image, J3, occurs

along the areas of sharp intensity contrast in the image and

along the image borders. This example shows how to

reduce the ringing effect by specifying a weighting

function. The algorithm weights each pixel according to

the WEIGHT array while restoring the image and the PSF.

In our example, we start by finding the "sharp" pixels using

the edge function. By trial and error, we determine that a

desirable threshold level is 0.3.

 The image is restored by calling deconvblind with

the WEIGHT array and an increased number of iterations

(30). Almost all the ringing is suppressed.[7]

Step 6: Using Additional Constraints on the PSF

Restoration

 The results shows how you can specify additional

constraints on the PSF. The function, FUN, below returns a

modified PSF array which deconvblind uses for the next

iteration.

 In this approach, FUN modifies the PSF by

cropping it by P1 and P2 number of pixels in each

dimension, and then padding the array back to its original

size with zeros. This operation does not change the values

in the center of the PSF, but effectively reduces the

PSF size by 2*P1 and 2*P2 pixels.

B. Deblurring Images Using the Lucy-Richardson

Algorithm

Step 1: Read the input Image

Step 2: Simulate a Blur and Noise

Step 3: Restore the Blurred and Noisy Image

Step 4: Iterate to Explore the Restoration

Step 5: Control Noise Amplification by Damping

Step 6: Create Sample Image

Step 7: Simulate a Blur

Step 8: Provide the WEIGHT Array

Step 9: Provide a finer-sampled PSF

 Lucy – Richardson Algorithm can be used

effectively when the point-spread function PSF (blurring

operator) is known, but little or no information is available

for the noise. The blurred and noisy image is restored by

the iterative, accelerated, damped Lucy-Richardson

algorithm. The additional optical system (e.g. camera)

characteristics can be used as input parameters to improve

the quality of the image restoration.[1]

Step 1: Read Image

 The example reads in an RGB image and crops it

to be 256-by-256-by-3. The deconvlucy function can

handle arrays of any dimension.[2]

Step 2: Simulate a Blur and Noise

 Simulate a real-life image that could be blurred

(e.g., due to camera motion or lack of focus) and noisy

(e.g., due to random disturbances). The example simulates

the blur by convolving a Gaussian filter with the true

image (using imfilter). The Gaussian filter then represents

a point-spread function, PSF.

 The example simulates the noise by adding a

Gaussian noise of variance V to the blurred image (using

imnoise). The noise variance V is used later to define a

damping parameter of the algorithm.

Step 3: Restore the Blurred and Noisy Image

 Restore the blurred and noisy image providing the

PSF and using only 5 iterations (default is 10). The output

is an array of the same type as the input image.

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering (IJERCSE)

Special Issue
National Conference on "Recent Trends, Advancement and Applications of Digital Image Processing" (NCDIP 2016)

 All Rights Reserved © 2017 IJERCSE 23

Step 4: Iterate to Explore the Restoration

 The resulting image changes with each iteration.

To investigate the evolution of the image restoration, you

can do the deconvolution in steps: do a set of iterations, see

the result, and then resume the iterations from where they

were stopped. To do so, the input image has to be passed as

a part of a cell array (e.g., start first set of iterations by

passing in {BlurredNoisy}instead of BlurredNoisy as input

image parameter).

luc1_cell = deconvlucy({BlurredNoisy},PSF,5); In that

case the output, luc1_cell, becomes a cell array. The cell

output consists of four numeric arrays, where the first is

the BlurredNoisy image, the second is the restored image

of class double, the third array is the result of the one-

before-last iteration, and the fourth array is an internal

parameter of the iterated set. The second numeric array of

the output cell-array, image luc1_cell{2}, is identical to the

output array of the Step 3, image luc1, with a possible

exception of their class (the cell output always gives the

restored image of class double).

To resume the iterations, take the output from the previous

function call, the cell-array luc1_cell, and pass it into the

deconvlucy function. Use the default number of iterations

(NUMIT = 10). The restored image is the result of a total

of 15 iterations.

Step 5: Control Noise Amplification by Damping

 The latest image, luc2, is the result of 15

iterations. Although it is sharper than the earlier result from

5 iterations, the image develops a "speckled" appearance.

The speckles do not correspond to any real structures

(compare it to the true image), but instead are the result of

fitting the noise in the data too closely.

 To control the noise amplification, use the

damping option by specifying the DAMPAR parameter.

DAMPAR has to be of the same class as the input image.

The algorithm dampens changes in the model in regions

where the differences are small compared with the noise.

 The DAMPAR used here equals 3 standard

deviations of the noise. Notice that the image is smoother.

 The next part of this example explores the

WEIGHT and SUBSMPL input parameters of the

deconvlucy function, using a simulated star image (for

simplicity & speed).

Step 6: Create Sample Image

The example creates a black/white image of four stars.

Step 7: Simulate a Blur

 The example simulates a blur of the image of the

stars by creating a Gaussian filter, PSF, and convolving it

with the true image. Now simulate a camera that can only

observe part of the stars' images (only the blur is seen).

Create a weighting function array, WEIGHT, that consists

of ones in the central part of the Blurred image ("good"

pixels, located within the dashed lines) and zeros at the

edges ("bad" pixels - those that do not receive the signal).

To reduce the ringing associated with borders, apply the

edgetaper function with the given PSF.

Step 8: Provide the WEIGHT Array

 The algorithm weights each pixel value according

to the WEIGHT array while restoring the image. In our

example, only the values of the central pixels are used

(where WEIGHT = 1), while the "bad" pixel values are

excluded from the optimization. However, the algorithm

can place the signal power into the location of these "bad"

pixels, beyond the edge of the camera's view. Notice the

accuracy of the resolved star positions.[3]

 The example reads in an RGB image and crops it

to be 256-by-256-by-3. The deconvreg function can handle

arrays of any dimension.

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering (IJERCSE)

Special Issue
National Conference on "Recent Trends, Advancement and Applications of Digital Image Processing" (NCDIP 2016)

 All Rights Reserved © 2017 IJERCSE 24

Step 2: Simulate a Blur and Noise

 Simulate a real-life image that could be blurred

(e.g., due to camera motion or lack of focus) and noisy

(e.g., due to random disturbances). The example simulates

the blur by convolving a Gaussian filter with the true

image (using imfilter). The Gaussian filter represents a

point-spread function, PSF.

We simulate the noise by adding a Gaussian noise of

variance V to the blurred image (using imnoise).

Step 3: Restore the Blurred and Noisy Image

 Restore the blurred and noisy image supplying

noise power, NP, as the third input parameter. To illustrate

how sensitive the algorithm is to the value of noise power,

NP, the example performs three restorations.

 The first restoration, reg1, uses the true NP. Note

that the example outputs two parameters here. The first

return value, reg1, is the restored image. The second return

value, LAGRA, is a scalar, Lagrange multiplier, on which

the deconvreg has converged. The second restoration, reg2,

uses a slightly over-estimated noise power, which leads to

a poor resolution.[4]

 The third restoration, reg3, is given an under-

estimated NP value. This leads to an overwhelming noise

amplification and "ringing" from the image borders.

Step 4: Reduce Noise Amplification and Ringing

 Reduce the noise amplification and "ringing"

along the boundary of the image by calling the edgetaper

function prior to deconvolution. Note how the image

restoration becomes less sensitive to the noise power

parameter.

Step 5: Use the Lagrange Multiplier

 Restore the blurred and noisy image, assuming

that the optimal solution is already found and the

corresponding Lagrange multiplier, LAGRA, is given. In

this case, any value passed for noise power, NP, is ignored.

 To illustrate how sensitive the algorithm is to the

LAGRA value, the example performs three restorations.

The first restoration (reg5) uses the LAGRA output from

the earlier solution (LAGRA output from first solution in

Step 3).

 The second restoration (reg6) uses 100*LAGRA

which increases the significance of the constraint. By

default, this leads to over-smoothing of the image.

 The third restoration uses LAGRA/100 which

weakens the constraint (the smoothness requirement set for

the image). It amplifies the noise and eventually leads to a

pure inverse filtering for LAGRA = 0.

Step 6: Use a Different Constraint

 Restore the blurred and noisy image using a

different constraint (REGOP) in the search for the optimal

solution. Instead of constraining the image smoothness

(REGOP is Laplacian by default), constrain the image

smoothness only in one dimension (1-D Laplacian).

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering (IJERCSE)

Special Issue
National Conference on "Recent Trends, Advancement and Applications of Digital Image Processing" (NCDIP 2016)

 All Rights Reserved © 2017 IJERCSE 25

D. Deblurring Images Using a Wiener Filter

Step1: Read Image

Step2: Simulate a Motion Blur

Step3: Restore the Blurred Image

Step4: Simulate Blur and Noise

Step5: Restore the Blurred and Noisy Image: First Attempt

Step6: Restore the Blurred and Noisy Image: Second

Attempt

Step7: Simulate Blur and 8-Bit Quantization Noise

Step8: Restore the Blurred, Quantized Image: First

Attempt

Step9: Restore the Blurred, Quantized Image: Second

Attempt.

Step1: Read Image

Step2: Simulate a Motion Blur

 Simulate a blurred image that you might get from

camera motion. Create a point-spread function, PSF,

corresponding to the linear motion across 31 pixels

(LEN=31), at an angle of 11 degrees (THETA=11). To

simulate the blur, convolve the filter with the image using

imfilter.

Step3: Restore the Blurred Image

 The simplest syntax for deconvwnr is

deconvwnr(A, PSF, NSR), where A is the blurred image,

PSF is the point-spread function, and NSR is the noise-

power-to-signal-power ratio. The blurred image formed in

Step 2 has no noise, so we'll use 0 for NSR.[5]

Step4: Simulate Blur and Noise

 Now let's try adding noise.

Step5: Restore the Blurred and Noisy Image: First

Attempt.

 In our first restoration attempt, we'll tell

deconvwnr that there is no noise (NSR = 0). When NSR =

0, the Wiener restoration filter is equivalent to an ideal

inverse filter. The ideal inverse filter can be extremely

sensitive to noise in the input image, as the next image

shows:

 The noise was amplified by the inverse filter to

such a degree that only the barest hint of the man's shape is

visible.

Step6: Restore the Blurred and Noisy Image: Second

Attempt

 In our second attempt we supply an estimate of

the noise-power-to-signal-power ratio.

Step7: Simulate Blur and 8-Bit Quantization Noise

 Even a visually imperceptible amount of noise can

affect the result. Let's try keeping the input image in uint8

representation instead of converting it to double.

Step8: Restore the Blurred, Quantized Image: First

Attempt

 Again, we'll try first telling deconvwnr that there

is no noise.

Step9: Restore the Blurred, Quantized Image: Second

Attempt.

 Restore the Blurred, Quantized Image: Second

Attempt. Next, we supply an NSR estimate to

deconvwnr.[6]

Restoration of Blurred, Quantized Image Using

Computed NSR

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering (IJERCSE)

Special Issue
National Conference on "Recent Trends, Advancement and Applications of Digital Image Processing" (NCDIP 2016)

 All Rights Reserved © 2017 IJERCSE 26

III. CONCLUSION

This paper describes how to use blind

deconvolution and Damped Richardson-Lucy Algorithm

to deblur images. And also Regularized deconvolution

and Wiener deconvolution can be used effectively when

constraints are applied on the recovered image and limited

information is known about the additive noise. The

blurred and noisy image is restored by a constrained least

square restoration algorithm that uses a regularized filter.

Wiener deconvolution can be useful when the point-

spread function and noise level are either known or

estimated.The simulation results shows that the

functionality of the above said deconvolution methods

using algorithmic and filter based approaches.

REFERENCES

[1] Jian-Jiun Ding; Wei-De Chang; Yu Chen; Szu-Wei

Fu; Chir-Weei Chang;Chuan-Chung Chang, “Image

deblurring usinga pyramid-based Richardson-

Lucy algorithm”, IEEE,2014

[2] Hongbin Wang; Paul C. Miller, “Scaled Heavy-Ball

Acceleration of the Richardson-Lucy Algorithm for 3D
Microscopy Image Restoration”, IEEE,2014

[3]
 Jiunn-Lin Wu; Chia-Feng Chang; Chun-Shih

Chen.“An improved Richardson-Lucy algorithm for
single image deblurring using local extrema filtering”
IEEE,2012.

[4] Elad Shaked; Sudipto Dolui; Oleg V. Michailovich,

“Regularized Richardson-Lucy algorithm for reconstruction
of Poissonian medical images” IEEE,2011

[5] Matteo Pedone; Eduardo Bayro-Corrochano; Jan

 Flusser; “Quaternion Wiener Deconvolution for Noise

 Robust Color Image Registration”, IEEE,2015

[6] Sina Jafarpour; Ali Pezeshki; Robert Calderbank,
“Experiments with Compressively

Sampled Images and a New Debluring-

Denoising Algorithm”, IEEE 2008.

[7] Ming Zhao; Wei Zhang; Zhile Wang; Fugang Wang,

“Spatially adaptive image deblurring based on nonlocal
means”, IEEE 2010.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Jian-Jiun%20Ding.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Jian-Jiun%20Ding.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Jian-Jiun%20Ding.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Wei-De%20Chang.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Wei-De%20Chang.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Yu%20Chen.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Yu%20Chen.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Szu-Wei%20Fu.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Szu-Wei%20Fu.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Chuan-Chung%20Chang.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Chuan-Chung%20Chang.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Chuan-Chung%20Chang.QT.&newsearch=true
http://ieeexplore.ieee.org/document/6900829/
http://ieeexplore.ieee.org/document/6900829/
http://ieeexplore.ieee.org/document/6900829/
http://ieeexplore.ieee.org/document/6900829/
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Hongbin%20Wang.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Hongbin%20Wang.QT.&newsearch=true
http://ieeexplore.ieee.org/document/6665057/
http://ieeexplore.ieee.org/document/6665057/
http://ieeexplore.ieee.org/document/6665057/
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Jiunn-Lin%20Wu.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Jiunn-Lin%20Wu.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Jiunn-Lin%20Wu.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Chia-Feng%20Chang.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Chia-Feng%20Chang.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Chun-Shih%20Chen.QT.&newsearch=true
http://ieeexplore.ieee.org/document/6473447/
http://ieeexplore.ieee.org/document/6473447/
http://ieeexplore.ieee.org/document/6473447/
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Elad%20Shaked.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Elad%20Shaked.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Elad%20Shaked.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Oleg%20V.%20Michailovich.QT.&newsearch=true
http://ieeexplore.ieee.org/document/5872745/
http://ieeexplore.ieee.org/document/5872745/
http://ieeexplore.ieee.org/document/5872745/
http://ieeexplore.ieee.org/document/5872745/
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Matteo%20Pedone.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Matteo%20Pedone.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Matteo%20Pedone.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Eduardo%20Bayro-Corrochano.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Eduardo%20Bayro-Corrochano.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Jan%20Flusser.QT.&newsearch=true
http://ieeexplore.ieee.org/document/7029035/
http://ieeexplore.ieee.org/document/7029035/
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Sina%20Jafarpour.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Sina%20Jafarpour.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Sina%20Jafarpour.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Sina%20Jafarpour.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Robert%20Calderbank.QT.&newsearch=true
http://ieeexplore.ieee.org/document/4741149/
http://ieeexplore.ieee.org/document/4741149/
http://ieeexplore.ieee.org/document/4741149/
http://ieeexplore.ieee.org/document/4741149/
http://ieeexplore.ieee.org/document/4741149/
http://ieeexplore.ieee.org/document/4741149/
http://ieeexplore.ieee.org/document/4741149/
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Ming%20Zhao.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Ming%20Zhao.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Ming%20Zhao.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Zhile%20Wang.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Zhile%20Wang.QT.&newsearch=true
http://ieeexplore.ieee.org/document/5646868/
http://ieeexplore.ieee.org/document/5646868/

