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Abstract: - The purpose of this paper is to obtain the solution of space fractional partial differential equations by Adomian 

Decomposition Method (ADM). The solutions are derived in convergent series form which shows the effectiveness of method for 

solving wide variety of fractional differential equations. We obtain the solution of some test problems and these are graphically 

represented by Mathematica. 
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I. INTRODUCTION  

 

In 1980, Adomian proposed decomposition method 

known as Adomian Decomposition Method (ADM) [7, 

8, 9]. Over last twenty years, the ADM has been applied 

to a wide class of deterministic and stochastic partial 

differential equations. This method has been intensively 

applied by researchers because; it provides analytical 

approximate solution for nonlinear partial differential 

equations without linearization, perturbation, and 

discretization. The convergence of ADM has been 

solved by many authors. A comparison between ADM 

and Taylor series method to the solution of linear and 

nonlinear Ordinary Differential Equation is contributed 

by A.M.Wazwaz in his work [2]. For a better 

understanding of the fractional derivatives and for a 

physical understanding of the fractional equations, the 

readers can refer the research paper written by Jin-Fa 

Cheng and Yu-Ming Chu [11]. Mainardi [4], [5], [6] 

presented analytical investigation of the time fractional 

diffusion wave equations. He also provided a 

comprehensive review of research on the application of 

calculus in continuum and statistical mechanics 

including research on fractional diffusion-wave 

solutions. Agrawal [16] presented a general solution for 

a time fractional diffusion-wave equation defined in a 

bounded space domain. Al-Khaled and Momani [12] 

used the ADM to obtain an approximate solution for the 

generalized time-fractional diffusion-wave equation. 

Researcher like Duan Junsheng, An Sianye and Xu 

Mingyu have applied ADM to solve time fractional 

partial differential equation by ADM [3]. Also Shaher 

Momani has solved space time fractional diffusion wave 

equation by ADM [17]. Mridula Garg and Ajay Sharma 

worked for solution of space-time fractional Telegraph 

equation by ADM [14]. Recently, ordinary and partial 

differential equations of fractional order have been the 

focus of many studies due to their frequent appearance in 

various applications in fluid mechanics, biology, physics 

and engineering. Consequently, considerable attention 

has been given to the solutions of fractional partial 

differential equations of physical interest [3]. For better 

understanding of a phenomenon described by a given 

nonlinear fractional partial differential equation, the 

solutions of differential equations of fractional order are 

much involved. Fractional derivatives provide more 

accurate models of real world problems than integer 

order derivatives. Because of their many applications in 

scientific fields, fractional partial differential equations 

are found to be an effective tool to describe certain 

physical phenomenon such as diffusion process, 

electrical and rheological material properties, control 

science, electro magnetic theory, capacitor theory, 

vibrating damping system, hereditary prediction of gene 

behaviour, fractional neural modelling on bio-sciences, 

communication channel traffic models, viscoelasticity 

theories and several more [1], [10], [13]. This brief 

review of fractional diffusion equation encouraged us to 

work in fractional calculus. In our work, we developed 

the most general Fractional Adomian Decomposition 

Method (FADM) for linear and nonlinear space 

fractional diffusion equation in time direction. As an 

application of this new method some practical examples 

have been solved and their solutions are compared with 
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the solution of original diffusion equation. The 

developed FADM is useful for researchers to think 

differently and to discover and describe the natural 

phenomenon (physical, economical, biological, chemical 

processes) with wonderful tool of mathematics, which is 

called Fractional Calculus. This paper will generate 

physical and engineering essence of fractional calculus. 

Our minor contribution to the vast area of fractional 

calculus is to handle linear and nonlinear fractional 

differential equations, to have physical sense to solve 

that fractional differential equation, to interpret laws of 

nature in simple way, to make fractional calculus 

interesting, to give picturesque sense to complex looking 

mathematics. Furthermore, this research work is useful 

to encourage new researchers to carry out research and 

development on scientific and engineering aspects. We 

organize the paper as follows: In Section 2, some 

definitions and properties of fractional calculus are 

presented. Section 3 is devoted to develop the FADM for 

space fractional partial differential equations. In section 

4, we present examples to show the efficiency of ADM. 

Finally, relevant conclusions are drawn in section 5. 

 

II. PRELIMINARIES AND NOTATIONS 

 

In this section, we study some definitions and properties 

of fractional calculus. 

Definition 2.1 A real function f (t), t > 0 , is said to be in 

the space Cα , α  R if there exists a real number p > α, 

such that f(t) = t
p
f1(t), where f1(x)  C[0,∞) and it is said 

to be in the space   
  if and only if f

(m)
(t)  Cα ,  m N. 

Definition 2.2 The Riemann - Liouville fractional 

integral operator of order α ≥ 0, of a function f  C, μ ≥ 

-1, is defined as  

     

Jα f(x) =  
 

    
∫

    

        

 

 
    , α > 0, x > 0 

     

 J0 f(x) = f(x) 

Definition 2.3 The Caputo derivative of fractional order 

α of a function f(t),  f(t)     
  is defined as follows 

  
        

 

      
∫

       

            

 

 
   ,  for  m - 1 < α ≤ 

m, m  N, x > 0, 

      
 
            

  

 
   

(ii)   
 
            

  

 
   

Properties: 

For f(x)  C,  ≥ -1, α, β ≥ 0 and γ > -1, we have 

(i) J
α 
J
  

f(x) = J
α+  

f(x) 

(ii) J
α 
J
  

f(x) =  J
 
J

α 
f(x) 

It is simple to prove the following properties of 

fractional derivatives and integrals that will be used in 

the analysis 

(i)      f(t) = f(t) 

(ii)     
  f(t) = f(t) - ∑         

    
  

  
 , x > 0 

(iii)      = 
      

        
      

(iv)      = 
      

        
      

In the next section, we develop the fractional Adomain 

decomposition method for fractional partial differential 

equation. 

 
III. THE FRACTIONAL ADOMIAN 

DECOMPOSITION METHOD (FADM) 

 

In order to elucidate the solution procedure of the 

FADM, we consider the following general fractional 

partial differential equation. 
Lu(x, t) + R u(x, t) + Nu(x, t) = g(x, t), m - 1 ≤ β ≤ m, x  R, t > 0   

(3.1) 

where L is the operator of the highest order derivatives, 

R is fractional order derivative, N is nonlinear operator 

and g is source term. Let 

   = 
   

     =          . . .     (3.2) 

               

is the (nβ)th order fractional derivative then the 

corresponding R
- 

 operator will be written in the 

following form 

     = 
 

       
 

∫  
 

 
∫  

  

 
∫  

    

 
          ∫  

  

 
     

       
      

             

and 
 

      
∫        

 

 

 

is the Caputo integration. 

The solutions can be obtained by using   
   or 

  
  

  however using   
   t requires the use of initial 

conditions only whereas operating   
  

   imposes the use 

of initial and boundary conditions. Therefore, to reduce 

the size of calculations, we apply the decomposition 

method in t-direction.  

Since Lt is a second order differential invertible linear 

operator, therefore,   
   is assumed as an integral 

operator given by 

   
  u(x, t) = ∫ ∫  

 

 
      

 

 
     

   
  Lu(x, t) = u(x, t) – u(x, 0) – tut (x, t) 

Operating with the operator   
    on both sides of 

equation (3.1), we have 

   
              

                   ] =    
   g(x, 

t), m-1 <     
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u(x, t) = u(x, 0) + tut(x, 0) -    
  [  u(x, t) + Nu(x, t)] + 

   
  g(x, t), m-1 <               (3.3) 

Now, we decompose the unknown function u(x, t) into 

sum of an infinite number of components given by the 

decomposition series 

u(x, t) = ∑   
 
   (x, t)             (3.4)

      

The nonlinear terms Nu(x, t) are decomposed in the 

following form: 

Nu(x,t)= ∑   
 
      (3.5) 

                                                                                                              

where the Adomian polynomial can be determined as 

follows: 

An = 
 

  
 [

   

     ∑    
      ]

   
  (3.6) 

               
where An are called Adomian polynomials, which can be 

calculated easily with the help of mathematica software. 

Substituting the decomposition series (3.4) and (3.5) into 

both sides of equation (3.3) gives 

∑   
 
   (x, t) = u(x, 0) + tut (x, 0) -    

  R
 
 

 ∑   
 
        ] -    

    ∑   
 
   ] +    

  g(x, t) (3.7) 

                

The components un(x, t), n ≥ 0 of the solution u(x, t) can 

be recursively determined by using the relations as 

follows: 

u0(x, t) = u(x, 0) + tut (x, 0) +    
  g(x, t)  

     

u1(x, t) = -   
   R 

u0 (x, t)] -    
  A0 

u2(x, t) = -   
   R 

u1 (x, t)] -    
  A1 

u3(x, t) = -   
   R 

u2 (x, t)] -    
  A2 

  . 

  . 

  . 

un+1 (x, t) = -   
   R 

un (x, t)] -    
  An 

where each component can be determined by using the 

preceding components and we can obtain the solution in 

a series form by calculating the components un(x, t), n ≥ 

0. Finally, we approximate the solution u(x, t) by the 

truncated series. 

   (x, t) = ∑   
   
         

         = u(x, t) 

In the next section, we illustrate some examples and their 

solutions are represented graphically by mathematica 

software. 

 

IV. APPLICATIONS 

 

FADM for Space Fractional Partial Differential 

Equations: 

Consider the space fractional partial differential equation 

       

  
 = d(x) 

        

    + g(x, t)  (4.1) 

             

on a finite domain  xL < x < xR with 1 < β ≤ 2 and the 

diffusion coefficient d(x) > 0. 

The operator form of (9) can be written as 

               
 
              (4.2) 

               

Therefore, by FADM we can write 

∑         
    = u(x, 0) +   

  [      
 ∑         

   ] + 

  
         

then each term of series is given by Adomian 

Decomposition Method recurrence relation 

                     
          

               
  [      

 
       ] (4.3) 

              

It is worth noting that once the zeroth component u0 is 

defined, and then the remaining components un, n ≥ 1 

can be completely determined. Therefore, the series 

solution is entirely determined. 

 

Test Problem (i): Consider the following space 

fractional partial differential equation 

   u (x, t) =   
 

u(x, t) , 0 < x <  , 1 <   ≤ 2, t > 0 

Initial condition: u(x, 0) = sinx 

Boundary conditions: u(0, t) = 0, u(π, t) = 0, t ≥ 0 

Using equation (4.3), we have 

u0(x, t) = u(x, 0) 

 = sinx 

u1(x, t) =   
     

 
 u0], 

 =   
     

 
  sinx], 

 = t sin(x+
  

 
), 

u2(x, t) =   
     

 
 u1], 

 =   
     

 
 t sin(x+

  

 
)], 

 = 
  

  
 sin(x+

   

 
), 

u3(x, t) =   
  [  

 
 u2], 

 =   
  [  

 
 
  

  
 sin(x+

   

 
)], 

 = 
  

  
 sin(x+

   

 
), 

 . 

 .  

 . 

Therefore, the series solution of IBVP is given by 

u (x, t)= u0 (x, t) + u1(x, t) + u2(x, t) + u3(x, t) + …….. 

By substituting the above values, we get 

u(x, t) = sinx + t sin(x + 
  

 
) +

  

  
 sin(x+

   

 
) + 

  

  
 

sin(x+
   

 
) +. . . . 

u (x, t) = ∑
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For β = 2 the exact solution of the original partial 

differential equation is 

u(x, t) =     sinx 

The graphical representation of the solution is as 

follows: 

 
Fig. 4.1: The exact solution of one-dimensional 

diffusion equation. 

   

 
Fig.4.2: Solution for one-dimensional space fractional 

diffusion equation with β = 1.8 

 

Test Problem (ii): Consider the following space 

fractional partial differential equation 

   u(x, t) =   
 

u(x, t) + sinx, 0 < x <  , 1 <   ≤ 2, t > 0 

Initial condition: u(x, 0) = cosx 

Boundary conditions: u (0, t) =    , u(π, t) =     , t ≥ 0 

By using FADM, we have following recursive relation 

u0(x, t) = u(x, 0) + Lt
-1

g(x, t), 

u0(x, t) = cosx + Lt
-1

sinx 

u0(x, t) = cosx + t sinx 

u1(x, t) = Lt
-1

[u0(x, t)] 

u1(x, t) = t cos (x+βπ/2) + 
  

  
 sin (x+βπ/2) 

Similarly we can calculate the values of u2(x, t) we have 

u2(x, t) = Lt
-1

[DX
β
 u1(x, t)], 

u2(x, t) = 
  

  
cos (x+2βπ/2) + 

  

  
sin (x+2βπ/2)                         

. 

Therefore, the series solution for the IBVP is given by 

 u (x, t)= u0(x, t) + u1(x, t) + u2(x, t) + u3(x, t) + …….. 

Substituting values of components in above equation, the 

solution of the original IBVP is given by 

u (x, t)= cosx + t sinx + t cos (x+
  

 
) + 

  

  
 sin (x+

  

 
)+ 

  

  
cos (x+

   

 
) + 

  

  
sin (x+

   

 
) + . . . .   

u (x, t)= [cosx + tcos(x+
  

 
) + 

  

  
cos(x+

   

 
) + . . 

.]+[tsinx + 
  

  
sin (x+

  

 
)+ 

  

  
sin(x+

   

 
 +…] 

 

u(x, t) =  ∑
  

  
       

   

 
  

 ∑
    

      
       

   

 
  

  

If β = 2 then the closed form solution of the original 

IBVP is 

u(x, t) = cosx    + sinx (1 -    ) 

The graphical representation of the solution is as follow: 

 
Fig. 4.3: The exact solution of one-dimensional 

diffusion equation. 

 

 
Fig. 4.4: Solution for one-dimensional space 

fractional diffusion equation with β = 1.8 

 

V. CONCLUSIONS 

 

The main objective of this work is to obtain a solution 

for space fractional partial differential equations. We 

observe that Adomian Decomposition Method is a 

powerful method to solve space fractional partial 

differential equations. The method is applied to obtain 

the solutions of several examples to show the 
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applicability and efficiency of the proposed method. The 

obtained results demonstrate the reliability of the 

algorithm. It is worth mentioning that the proposed 

technique is capable of reducing the volume of the 

computational work as compared to the classical 

methods. Finally, we come to the conclusion that the 

ADM is very powerful and efficient in finding solutions 

for wide class of space fractional partial differential 

equations.  
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