
 

 All Rights Reserved © 2018 IJERCSE                         69 

 

 

 

ISSN (Online) 2394-2320 
 

International Journal of Engineering Research in Computer Science and Engineering  

(IJERCSE)  

Vol 5, Issue 3, March 2018 
Offensive Protection in Android for RIG 

 

[1]
 Atul Chandrakant Jadhav, 

[2]
 Sunil P. Khachane   

        [1] [2]
 Department of Computer Engineering, Rajiv Gandhi Institute of Technology, Mumbai, India  

 

Abstract: - Pilfering of sensitive data from apps is at all times measured to be one of the most precarious threats to Android arena. 

This can happen to the apps without palpable execution and implementation flaws, by molesting some design blemishes of the 

mobile operating system, e.g., common communication channels a rogue app needs to run side by side with the sincere app (such as 

phone book, Internet browser, Bluetooth control service, messaging, dialer, IoT interface, etc.) to save its runtime information. To 

dispose for protection from this new species of attacks, here is a research of a potent & advanced system which does not require 

any adjustment of principal systems such as on operating system or existing applications. This system will be proactively protecting 

any app from any category exist today in android arena. This new approach of protection, called Offensive Protection in Android 

from RIG attacks, spoils a rogue app’s runtime monitoring encounter by suspending (ending & pausing) all alarmed background 

processes when the sincere app is running in the front, and restoring the state of all alarmed background processes from the state 

where they had paused after the sincere app finishes execution entirely and its runtime environment is sterilized. The trial studies 

show that this new Offensive Protection is sovereign of OS version and works well with small impacts on the ability of sincere apps 

and the routine of OS. Most essentially, the notion primary behind this approach, comprises providing security at the level of 

application, defense at the level of common channel with no conciliation to routine of the device because offense is the best defense. 

 

Keywords: Android Security, Mobile Security, Offensive protection in android, RIG Attack, Runtime Information Gathering. 

         

I. INTRODUCTION    

 

Android systems are enormously widespread because of 

masses of paid & free applications titled as apps. Apps are 

motive for huge spreading of android based mobile systems 

and nowadays become mandatory part of it with express 

development. Every now & then android market is engulfed 

with newer apps from diverse categories with resolve to 

provide facilities & services in fields such as Medical, 

Finance, Media, Education, Entertainment, Security, 

Banking, etc. All of these apps desire to access, process and 

convey delicate information such as financial, personal, 

business related activities (e.g., investment secret, bank 

details, disease and medical history, social media 

credentials, etc.) that needs to be protected from illicit or 

rogue packages installed and residing on same device and 

running at concurrent time. Android OS maintains security 

machinery for preventive apps from accessing each other’s 

data by providing sandboxing atmosphere for apps 

execution and by providing unique process Id’s. This 

defense though is not adequate to protect runtime 

information gathering through common communication 

channels (e.g., audio, Bluetooth) or open resources (e.g., 

memory, CPU usage). Delicate data could still be 

unprotected to the rogue app that constantly monitors the 

decent app’s events and collects its runtime information 

from those public resources. Runtime information gathering 

posture severe threat to latest version of android systems 

and even to secrecy of its users[1]. 

Runtime information gathering is an activity that comprise 

of malevolently saving the data processed, produced, 

transferred or received by another app that does not 

mutually approves to share its delicate or any other form of 

data during its execution, in an effort to directly steal or 

indirectly conclude delicate user information. Such an 

attack can chance by molesting the permission the rogue 

app sanctioned by the user, e.g., a non-messaging app 

reading all inward and outward messages without user’s 

accord, recording phone dialogue by a non-dialer app [2], 

[3], which was approved RECORD_AUDIO permission at 

the time of install and extracting subtle data such as 

transaction PIN or CVV no. [4]. Also, a Bluetooth activated 

medicinal device’s decent app can bounce out delicate & 

vital information [5]. A big apprehension here is that even 

zero permission grants can still gain greatly delicate & vital 

data from a variety of public or common channels, 

signifying the imperative vulnerability of mobile systems in 

extrication of an app’s processes from its data. Examples 

can comprise Internet browsers give out web content and 

other delicate information detected by simply reading the 

memory foot prints; phone’s accelerometer coordinate 

values pilfered from public channel can reveal key strokes 

logged [6]. Case in fact comprises recording audio of phone 

talks from the genuine phone app, gathering medical history 

data to conclude the ailment condition of user, etc. This 

runtime information gathering (RIG) threat is convincing 

and severe, as validated by earlier study and new 

discoveries, these rogue apps can read entire message 

threads, can control Bluetooth data transmission, can read, 

alter and even spoof contact in the device (which can lead to 



 

ISSN (Online) 2394-2320 
 

International Journal of Engineering Research in Computer Science and Engineering  

(IJERCSE)  

Vol 5, Issue 3, March 2018 
 

 

 All Rights Reserved © 2018 IJERCSE                          70 

 

 

a Social Engineering attack through which device user can 

fall prey to the name displayed but with attackers contact 

no. underneath, and can misinterpret or overlook it as a 

trusted contact), can steal passwords and other credentials 

no matter if they are encrypted or plain format, can control 

IoT enabled devices which are connected by means of 

shared communication channel to handset, can disclose user 

location, can collect phone call recordings and decipher pin 

from voice sample, etc. 

In Android operating system applications are divided in 

front and background occurrences where any app can be 

stopped and resume as per need of operating system. 

Offensive Protection in Android from RIG takes advantage 

of this treatment given to applications by android systems. 

Offensive Protection in Android from RIG will also be 

sensibly designed to select the true moments to start and 

end the protection process, and efficiently defense itself 

against rogue apps. The experimental studies show that this 

new Offensive Protection in Android from RIG system is 

independent of OS version and works well with small 

influences on the efficacy of legitimate apps and also the 

performance of the OS is affected marginally less.  

 

II. EXISTING SYSTEM 

 

Existing solutions for defying Runtime Information 

Gathering attack needs a revision of either the Android 

Operating System or the unprotected applications which are 

at risk. Refining the access control mechanism in android 

system is also possible to dodge the risk of Runtime 

information gathering but all of these approaches 

unenviably disturb the system’s efficiency and usability and 

at the same stage is time as well as resource consuming. 

Android provides security to each application by 

sandboxing its space which delights each app exclusively 

and thus providing process identification and file system 

access control. Each app is treated as a user thus assigned a 

user ID (UID), in order to isolate them from each other. 

This keeps public and shared resources out of the scope of 

this security mechanism causing easy resource sharing such 

as Bluetooth, Internet connection, audio, camera captures, 

etc. among multiple apps and users. Each app at the time of 

its installation must be granted a permission to access these 

shared resources. There are different protection levels [7] 

assigned to each permission, such as some permission are 

automatically granted to the apps when prompted, some 

risky permissions need user’s consent, and critical system 

permissions for system apps. Apps can access these shared 

resources only with a proper permission granted. 

There are some serious flaws in this security mechanism. 

Such as once a permission is granted then there is no control 

of user or OS over how and when that permission grant is 

utilized, For example, a non-messaging app with 

MESSAGE_READ permission can access all messages as 

per its will and wish, an app with CONTACT_READ and 

INTERNET_CONNECT permission can transmit sensitive 

contacts from phonebook, an app with AUDIO_RECORD 

permission can catch all phone conversations and all of this 

takes place without discrete knowledge of the user. Added 

to this no protection provided to runtime information flow 

between apps which can lead to a RIG attack. Rogue apps 

running in the background can cause severe damage to 

confidentiality of user and integrity of the system. When 

any such specific RIG attack happens and identified then 

Google & sometimes manufacturer of mobile handset come 

up with a security patch which again does not possesses a 

huge scope of success against the rest of the other types of 

RIG attacks. Scope of application developers or android 

programmers revisiting to develop patch for vulnerable app 

is too much time consuming and technically impossible 

because no app can override the permission grants given to 

any other app. 

 

III. PROBLEM DEFINITION 

 

Android is ingenuous to endure the RIG menace. The 

operational restrictions, such as public channels and shared 

resources, expose it to abundant practices of runtime 

information gathering, which resulting into the disclosure of 

intense user information. This vulnerability is genuine, 

persistent and severe, thus only new methodologies or 

techniques can possibly tackle and provide actual solution 

with suitable installation over millions of android devices 

across globe. 

Thus there is immense need to develop a security system 

capable to offensively defend known RIG attacks and 

provide secured environment for execution of sincere app 

and defend user sensitive data from leaking through public 

& shared communication channels on the application level, 

without touching the OS or the sincere apps under 

protection, this system will be called Offensive Protection 

in Android from RIG, that can be accessed from Google 

Play store and installed on any Android device to acquire 

immediate protection of user’s sincere apps by taking 

advantage of side channel information and detection of 

rogue apps with suspending these rogue apps and avoid 

permission exploitation granted at the time of install. 

 

IV. CONTRIBUTION 

 

In the aggressive world of information security, one must 

believe offence Is the best defense and applying the 

philosophy “to catch a thief think like a thief” so in this 

scenario of Runtime information gathering where shared 

channels are exploited by misusing the permissions granted, 

proposing here an offensive defense system called 

Offensive Protection in Android from RIG where this 

system will detect rogue apps by reading their shared 



 

ISSN (Online) 2394-2320 
 

International Journal of Engineering Research in Computer Science and Engineering  

(IJERCSE)  

Vol 5, Issue 3, March 2018 
 

 

 All Rights Reserved © 2018 IJERCSE                          71 

 

 

channel data and other logs representing their behavior 

which is then stored and used for detection of these rogue 

apps. That means trying Runtime information gathering 

(RIG Attack) on rogue apps to see if they are involved in 

Runtime information gathering.  

Our system works in two different modes as workflow 

described and shown in Fig.1 & Fig.2 below. Our system 

can be started from any mode thus providing detection and 

protection against message and phonebook related 

exploitation by third party apps or rogue apps. 

 

 
Fig 1: Detection Mode 

 

 
Fig 2: Protection Mode 

 

 

A. First Attack Vector  

First attack vector is on messaging service where situation 

is worst and even neglected by users & developers because 

READ_SMS permission is granted for more than 70% (i.e. 

more than 2 million) of apps on Google play store. Whereas 

95% out of these apps need not to read more than 1% of 

messages out of message book during its entire lifecycle of 

existence (i.e. between install till uninstall of that app) and 

that too for reading verification code sent over message for 

2-way authentication. But with this READ_SMS 

permission all of these apps can read complete message 

book from user’s device, where every user have one system 

message management app who reads 100% of messages all 

the time. Thus absolutely no need of granting READ_SMS 

permissions for any other apps. 

 

Table I : Sampling results for messaging service 

App  Kill/Pause% oom_score_adj Effective 

Facebook 87 9 Yes 

Google play 72 6 Yes 

Imo 85 8 Yes 

Olacabs 91 9 Yes 

Quickr 93 9 Yes 

Truecaller 88 8 Yes 

Twitter 95 8 Yes 

Uber 94 9 Yes 

Kotak bank 69 5 Yes 

Amazon 89 9 Yes 

 

Performance measurement is done against applications 

which are not system’s default messaging apps but still 

acquired READ_SMS permission at the time of install and 

tries to expose user information received or sent in the 

messaging service. The performance of our system is 

examined by sampling 100 to 200 attempts for each of the 

application listed in Table I and results of killing or pausing 

non system messaging app is given below in Fig. 3. Apps 

with more than 8 score were found to be killed or paused 

for more than 85% on android device running more than 10 

different applications simultaneously.  

 
Fig 3: Performance Measure for messaging service 

 

 

0%

200%

400%

600%

800%

1000%

1200%

oom_score_adj

Kill / Pause



 

ISSN (Online) 2394-2320 
 

International Journal of Engineering Research in Computer Science and Engineering  

(IJERCSE)  

Vol 5, Issue 3, March 2018 
 

 

 All Rights Reserved © 2018 IJERCSE                          72 

 

 

B. Second Attack Vector  

Second attack vector is also tried and tested. In this attack 

vector another area in mobile systems which deals with the 

contact details information called as Phone Book. The 

contact details in the mobile device are very sensitive and 

should be considered utmost private property of the mobile 

user. Contact information is second most favorite thing in 

RIG attacks that are besieged by rogue apps around the 

globe where rogue app attempts to access, update, transfer 

and wipe out partial or entire contact list without mobile 

user’s consent in the runtime. Android operating system 

provides a permission grant control for protection of phone 

book information such as READ_CONTACT & 

WRITE_CONTACT but once these permissions are granted 

then application is allowed to modify and play with phone 

book information at its will. Because RW_CONTACT 

permission is granted for more than 82% (i.e. more than 2.4 

million) of apps on Google play store. Whereas 98% out of 

these apps need not to read more than 2% of contacts out of 

phone book during its entire lifecycle of existence (i.e. 

between install till uninstall of that app) and that too for 

informing user about any contact in phone book is using 

this app for social networking or automatic service 

utilization. But with this RW_CONTACT permission all of 

these apps can read complete phone book from user’s 

device, where every user have one system (default) phone 

book management app who need to read 100% of contacts 

all the time. Thus absolutely no need of granting 

RW_CONTACT permissions for any other apps. 

 

Table II: Sampling results for Phonebook service 

App  Kill/Pause% oom_score_adj Effective 

Facebook 85 8 Yes 

Google play 90 9 Yes 

Imo 68 6 Yes 

LinkedIn 83 7 Yes 

CiscoWebex 87 7 Yes 

Truecaller 94 9 Yes 

Twitter 75 7 Yes 

Uber 81 8 Yes 

Kotak bank 62 4 Yes 

Amazon 94 9 Yes 

 

Performance measurement is done against applications 

which are not system’s default phone book management 

apps but still acquired RW_CONTACT permission at the 

time of install and tries to expose or misuse user 

information stored in phone book service. The performance 

of our system is examined by sampling 100 to 200 attempts 

for each of the application listed in Table II and results of 

killing or pausing non default phone book management app 

is given below in Fig.4. Apps with more than 7 score were 

found to be killed or paused for more than 80% on android 

device running more than 10 different applications 

simultaneously. 

 
Fig 4: Performance Measure for Phonebook service 

 

V. EXPERIMENTAL RESULTS 

 

Fig.5 shows first attack vector trying to exploit message 

read permission granted to it and reads messages all the 

time. 

 
Fig 5: Testing attack vector for messaging service 

Fig.6 shows first attack vector being detected by our 

offensive protection system and prompted to user discretion 

for its removal 

 
Fig 6: Detection of attack vector 

 

0%
100%
200%
300%
400%
500%
600%
700%
800%
900%

1000%

F
ac

eb
o
o

k

G
o
o
g

le
 p

la
y

im
o

L
in

k
ed

In

C
is

co
 W

eb
ex

T
ru

ec
al

le
r

T
w

it
te

r

u
b
er

k
o

ta
k

 b
an

k

A
m

az
o
n

Kill / Pause

oom_score_adj



 

ISSN (Online) 2394-2320 
 

International Journal of Engineering Research in Computer Science and Engineering  

(IJERCSE)  

Vol 5, Issue 3, March 2018 
 

 

 All Rights Reserved © 2018 IJERCSE                          73 

 

 

VI. CONCLUSION 

 

In Offensive Protection in Android from RIG a function is 

introduced which exploit the runtime information, system 

logs, and other related behavioral information ( such as no. 

of threads present, CPU usage when running in background, 

source of installation, category it belongs, etc.) of rogue 

apps before killing or pausing them and avoid sensitive user 

information from rogue access. Concentrating on two 

vectors type of RIG attack that is illegal message read & 

exploitable Phone book access, it is examined that Our 

system is found efficient against different category of apps 

who are not message management apps or default system 

message apps in case of first attack vector and default 

phone book management apps in case of second attack 

vector but still posing threat for stealing information in 

message system & contact information in phone book of 

device. This approach can be further extended to study and 

mitigate other types of RIG attacks such as contact 

spoofing, phone call recordings, Shared channel 

information stealing, etc. 

                                           

REFERENCES 

 

1. Nan Zhang, Kan Yuan, Muhammad Naveed, 

Xiaoyong Zhou and XiaoFeng Wang, “Leave Me 

Alone: App-level Protection Against Runtime 

Information Gathering on Android” in IEEE 

Symposium on Security and Privacy, 2015. 

[Online]. Available: 

http://ieeexplore.ieee.org/document/7163068/ 

 

2. X. Zhou, S. Demetriou, D. He, M. Naveed, X. Pan, 

X. Wang, C. A. Gunter, and K. Nahrstedt, 

“Identity, location, disease and more: Inferring 

your secrets from android public resources,” in 

Proceedings of 20th ACM Conference on 

Computer and Communications Security (CCS), 

Nov. 2013. [Online]. Available: 

http://www.cs.indiana.edu/∼zhou/files/fp045-

zhou.pdf 

 

3. S. Jana and V. Shmatikov, “Memento: Learning 

secrets from process footprints,” in Proceedings of 

the 2012 IEEE Symposium on Security and 

Privacy, ser. SP ’12. Washington, DC, USA: IEEE 

Computer Society, 2012, pp. 143–157. [Online]. 

Available: http://dx.doi.org/10.1109/SP.2012.19 

 

4. R. Schlegel, K. Zhang, X. yong Zhou, M. Intwala, 

A. Kapadia, and X. Wang, “Soundcomber: A 

stealthy and context-aware sound trojan for 

smartphones.” in NDSS. The Internet Society, 

2011.[Online].Available: http://dblp.uni-

trier.de/db/conf/ndss/ndss2011.html#SchlegelZZI

KW11 

 

5. M. Naveed, X. Zhou, S. Demetriou, X. Wang, and 

C. A. Gunter, “Inside job: Understanding and 

mitigating the threat of external device misbonding 

on android,” 2014. 

 

6. L. Cai and H. Chen, “Touchlogger: inferring 

keystrokes on touch screen from smartphone 

motion,” in Proceedings of the 6th USENIX 

conference on Hot topics in security, ser. 

HotSec’11. Berkeley, CA, USA: USENIX 

Association, 2011, pp. 9–9. [Online]. Available: 

http://dl.acm.org/citation.cfm?id=2028040.202804

9 

 

7. “Android 

permission,”http://developer.android.com /guide 

/topics / manifest /permission- element.html/, 

2014. 

 


