
ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 4, April 2018

All Rights Reserved © 2018 IJERCSE 243

Crypt Analysis of Des Cryptosystem over Man in

the Middle Attack

[1]
 Dr.R.Viswanathan,

[2]
 Chandrasegar.T,

[3]
 S.Aravinthkumar

 [1]
 Associate Professor (GalgotiasUniversity),

[2]
 Assistant Professor ((SE), VIT Uinversity),

[3]
 Assistant

Professor (GalgotiasUniversity).

Abstract: Nowadays, there is lot of advancement taking place in the database system w.r.t consistency, redundancy, dependency,

atomicity, data isolation etc. Various stages of normalization (1st, 2nd, 3rd data structure) and use of Relational database

technology are thriving throughout the data processing industry. RDBMS systems are valued for their ability to decrease

unnecessary data redundancy, preserve the integrity of data, and deliver maximum flexibility in retrieval. Well-structured RDBMS

applications normally result in normalized tables that duplicated data, creates appropriate key to data associations within a table

and eliminate repeating data groups. Most of the industries adheres the cod’s rules to obtain standards to their environment. It is

observed that third normal form is sufficient form for a small & large company sectors to maintain the database. In this paper, the

proposed algorithm objective is to implement an automated tool using dependency matrix, directed graph matrix and inference

axioms. It then continues with producing 2NF, 3NF. Tables are created as the procedure proceeds. One more side product of this

research is to automatically differentiate one primary key for every final table which is generated.

Keywords: — Relational Database , Automatic Normalization, Primary Key and Functional Dependency.

I. INTRODUCTION

Database normalization is the process of converting data

into well-formed or natural groupings which is stored in

one place [1, 11]. The aim of normalization is to generate

a set of relational tables with least amount of redundant

data that can be consistently and correctly modified. The

main aim of normalization technique is to design a

database that eludes update anomalies and redundant

information [2]. E.F Codd first proposed the process of

normalization. Normalization process is a sequence of

tests on a relation to determine whether it satisfies or

violates the requirements of a given normal form. E.F

Codd initially proposed three normal forms called first

(1NF) second (2NF), third (3NF) normal form. However

later on R.Boyce and E.F Codd made an amendment to

3NF, the trend of defining other normal forms continued

upto eight normal form. But in our paper we are

proposing normalization upto 3NF as it is an adequate

form of normalization for small to large companies to

maintain database. Summary of Normal Forms based on

Corresponding Normalization and Primary Keys which is

shown in Table 1. [3]

Table 1. Summary of Normal Forms Based on Primary

Keys and Corresponding Normalization.

 Normalization process proceeds in a top down fashion by

testing and evaluating each relation against the criteria for

normal forms and decomposing relations as necessary. If

the database qualifies 1NF only then it can be normalized

to 2NF and so on. This is clearly shown in the given

flowchartFig1.

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 4, April 2018

 All Rights Reserved © 2018 IJERCSE 244

Figure 1. Flowchart.

All the normal forms except 1NF depends totally upon

Functional Dependencies (FD) among the attributes of a

relation. The functional dependency is a constraint

between two sets of attributes in a database„s relation.

Given with a relation R and a set of attributes X, also in

with precisely one Y value, then ,Y is said to be

dependent attribute and X is said to be determinant set. If

X, Y and Z are sets of attributes in a given relation R,

several properties of functional dependencies can be

derived. Armstrong‟s axioms are the most important ones

which are:

I. Axiom of Reflexivity:

If Y is a subset of X, then {X Y}

II. Axiom of Augmentation:

If {X Y}, then {XZ YZ}

III. Axiom of Transitivity:

If {X Y and Y Z}, then {X Z}

IV. Axiom of decomposition, or projection:

If {X YZ}, then{X Y} and {X Z}

V. Axiom of pseudo transitivity:

If {XY, WYZ, then {WX Z}

With the repeated application of these axioms, all

Functional Dependencies can be generated. These

Functional Dependencies are the bases for database

normalization. Normalization is the major task in the

design of relational databases [4]. Normalization process

saves time as well as money. Many approaches have been

introduced since then. Various algorithms were

introduced by the time. Despite of its importance, a very

few algorithms were taken to design commercial

automatic normalization tools. Mathematical

normalization algorithm is implemented in [5]. In [6]

elaborate the UML meta-mode by set of stereotypes and

tagged values. Then, convert data model from one normal

form to another one by using a graph rewrite rule. Later

on Amir Hassan Bahmani came up with the automatic

database normalization technique, which use dependency

graph diagrams to represent functional dependencies of a

database [7].

II. RELATED WORKS

Sungchul Lee et al. [9] implemented an architecture that

can competently gather the information from various

sensors, store them in a database, and offer a user

interface for data retrieval. Arduino-based sensors are

used due to their cost-effectiveness and flexibility. Data

visualization can be done by Google Charts service and

Restful Web Service is used for communication with the

Arduino-based sensors.

Kunal Kumar et al. [10] introduced the Tabular approach

algorithm method to produce candidate key from set a

valid set of functional dependency. Once, it determines

the candidate key of a database table from a given valid

set of functional dependency, then applying normalization

algorithms. Order-sorted rewrite theories includes

Conditional term rewriting, which provides types,

subtypes and rewriting modulo axioms, and encompasses

the more restricted framework of conditional term

rewriting systems (CTRSs) presented in S. Lucas et al.

[12].

R. Vangipuram et al. [13] developed a web based

Normalization tool which can handle 30 redundant

attributes in the Functional dependency and more than 50

complex functional dependencies. Moussa Demba [14]

describes an automatic approach for database

normalization up to third normal form including all

candidate keys, primary key. Ivan Ubaleht [15] proposed

the set of inference rules, algorithm of computing of the

closure of a set of attributes and algorithm to test the

membership in the closure of the elementary relationships

of attributes.

A common perception is that Armstrong relations are

useful in the acquisition of data semantics. W.-D.

Langeveldt et al. [16] reports on empirical evidence for

this perception regarding the class of functional

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 4, April 2018

 All Rights Reserved © 2018 IJERCSE 245

dependencies. Investigated the usefulness of Armstrong

relations with respect to various measures for this

purpose. M Arenas et al. [1] provided a set of tools for

testing when a condition on a database design, specified

by a <i>normal form</i>, corresponds to a good design.

They used techniques of information theory, and define a

measure of information content of elements in a database

with respect to a set of constraints.

Yazici et al. [17] proposed a Java user interface called

JMath-Norm was designed to execute the Mathematica

modules in a systematic way. Mathematica‟s Java link

facility (JLink) is utilized to drive the Mathematica kernel

for this purpose. JMath-Norm provides an effective

interactive tool in an educational setting for teaching DB

normalization theory. Du H et al. [18] explore a prototype

system for normalization which includes 2NF, 3NF and

BCNF normalization. They developed an algorithm for all

normalization. Employ efficient data structures on

functional dependencies and relation schemes to improve

the performance of these algorithms.

Akehurst, D.H. et al. [19] provide a tool supporting the

normalisation of database system designs can

subsequently be developed providing an invaluable aid to

the software system designer.

III. REPRESENTING THE DEPENDENCIES

We observe all relations between different attributes of a

table using functional dependency. Graphically the

dependencies can be represented by using a set of

symbols. Simple keys (attributes) and composite keys

(keys composed of more than one attribute) have been

separated by (dotted) horizontal line.

A. Dependency Graph

 Following are the rules to be followed in Dependency

Graph.

And

a. At bottom of graph we draw each attribute and

encircle it.

b. A horizontal dotted line is drawn on top of all

attributes.

c. Each composite key are drawn on top of the

horizontal line and they are encircled.

d. Arrows are drawn for all functional dependency.

e. Reflexivity rule dependencies are drawn (eg.ST-

-

Considering the following case:

Relation ST {M, N, O, P, Q, R, S, T, U, V W, X}, with

dependencies: FDs = {MNO, QMP, SMQVW,

STRU, WMX, and VW } which is shown in

Figure 2.

Figure 2. Graphical representation of dependencies.

B. Dependency Matrix (DM):

As we have obtained all dependencies between

determinant keys thus we can create all dependencies

between all the attributes of a relation. These

dependencies are denoted by using a Dependency Matrix

(DM) which is as follows:

1. DM [n] [m] is a matrix where

 n=number of determinant keys

 m=number of simple keys

 2. Suppose that b a, c a and

 b, c {Simple key set}

 a {Determinant key set}

 3. Establish DM elements as follows:

 If a → b => DM[a] [b] =2

 If a → c => DM[a] [c] =1

 Otherwise => DM[a] [c] =0

The DM matrix for above example is indicated in Figure

3.

 M N O P Q R S T U V W X

M 2 1 1 0 0 0 0 0 0 0 0 0

Q 1 0 0 1 2 0 0 0 0 0 0 0

S 1 0 0 0 1 0 2 0 0 1 1 0

ST 0 0 0 0 0 1 2 2 1 0 0 0

W 1 0 0 0 0 0 0 0 0 0 2 1

V 0 0 0 0 0 0 0 0 0 2 1 0

Figure 3. Initial dependency matrix for figure 1.

2. Directed Graph Matrix

The Directed Graph (DG) Matrix for determinant keys

represents all the possible direct dependencies between

determinant keys. The Directed graph is an n×n matrix

where n describes the number of determinant keys. We

can generate DG matrix as shown in Figure 4:

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 4, April 2018

 All Rights Reserved © 2018 IJERCSE 246

Initially set all the elements of DG matrix to zeroes. Then

scan the DM matrix row by row.

 M N S ST W V

M 0 0 0 0 0 0

N 0 0 0 0 0 0

S 0 0 0 0 0 0

ST 0 0 0 0 0 0

W 0 0 0 0 0 0

V 0 0 0 0 0 0

Figure 4. Setting all the elements of the DG matrix as

zeroes.

Pseudocode

Using the following pseudo code generate DG Matrix.

Directed_Graph_Matrix ()

{

 For (i=0; i<n; i++)

 For (k=each attribute that composed of determinant

key i)

 For (j=0; j<n; j++)

 {

 If (DM[j] [k]! =0 && DG[j] [i]! =-1)

 DG[j] [i] =1;

 Else

 DG[j] [i] =-1;

 }

}

Using this, the DG Matrix for the above example is

generated as Figure 5:

 M N S ST W V

M 1 -1 -1 -1 -1 -1

N 1 1 -1 -1 -1 -1

S 1 1 1 -1 1 1

ST -1 -1 1 1 -1 -1

W 1 -1 -1 -1 1 -1

V -1 -1 -1 -1 1 1

Figure 5. DG matrix.

Now our aim is to determine all possible paths between

all pairs. This matrix shows all transitive dependencies

between determinant keys. If a path can be found from

node i to every element of subset of node j in graphical

representation of the dependencies either directly or

indirectly then set path [i] [j] = 1 else set path [i] [j] = -

1.The path matrix for above example is shown in Figure

6:

 M N S ST W V

M 1 -1 -1 -1 -1 -1

N 1 1 -1 -1 -1 -1

S 1 1 -1 -1 1 1

ST 1 1 1 1 1 1

W 1 -1 -1 -1 1 -1

V 1 -1 -1 -1 1 1

Figure 6. Determinant key transitive dependencies.

Dependency closure procedure identifies the

dependencies. Pseudocode for dependency closure is

given below:

Dependency_closure ()

{

 For (i=0; i<n; i++)

 For (j=0; j<n; j++)

 If (i! =j && path[i] [j]! =-1)

 {

 For (k=0; k<m; k++)

 If (DM[j] [k]! =0 && DM[j] [k]! =2)

 DM[i] [k] =j;

 }

}

The final Dependency closure matrix for our example is

shown in Figure 7.

 M N O P Q R S T U V W X

M 2 1 1 0 0 0 0 0 0 0 0 0

Q 1 M M 1 2 0 0 0 0 0 0 0

S W Q Q Q 1 0 2 0 0 1 V W

ST W S S S S 1 2 2 1 S V W

W 1 M M 0 0 0 0 0 0 0 2 1

V W W W 0 0 0 0 0 0 2 1 0

Figure 7. Dependency closure matrix.

IV. NORMALIZATION PROCESS

As the descriptions of different normal forms are already

given, we may proceed with the algorithm. The process of

normalization makes use of both determinant key

dependency and transitive dependencies.

1. Second Normal Form (2NF)

When all the other attributes depend on a set of attributes

then that set of attributes is called as candidate key. From

the final DM we found that ST is the candidate key. Thus

we got the database in 1NF. The resulting 1NF relation is:

 ST_Relation:{ST ,M,N,O,P,Q,R,U,V,W,X}

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 4, April 2018

 All Rights Reserved © 2018 IJERCSE 247

Next step is to create the 2NF form, we need to remove

all partial dependencies. In order to do this, the DM is

scanned row by row (ignore the primary key row),

starting from the very first row. If all values of the simple

keys which is used to create the determinant key of the

row being scanned are equal to 2 and the values of the

corresponding columns of the candidate key are equal to

2, then the partial dependency is found.

In above table, dependency of S to ST is partial.

Therefore, we have to create a new table. From the DM

matrix, we notice that Q and V are directly dependent to

S. The new table will be composed of S, Q, V, and all

simple keys which are transitively dependent on S. The

transitive dependencies are obtained from the determinant

key transitive dependencies matrix. S indicates the

primary key of this table. There is no other partial

dependency. The DM matrix is divided into two new

DMs corresponding to new tables which are in 2NF as

indicated in Figure 8.

 M N O P Q S V W X

M 2 1 1 0 0 0 0 0 0

Q 1 M M 1 2 0 0 0 0

S W Q Q Q 1 2 1 V W

W 1 M M 0 0 0 0 2 1

V W W W 0 0 0 2 1 0

(a) S_Relation :{ S,Q,V,W,M,N,O,P,X }.

 R S T U

ST 1 2 2 1

(b) ST_Relation :{ ST, R, U}

Figure 8: Database normalized up to NF.

2. Third Normal Form (3NF)

In order to achieve the relation into 3NF, each Directed

Matrix is look over row by row starting from the first row.

If a determinant key is met whose dependency is neither

wholly nor has partial dependent on the primary key, a

distinct table to be formed. The new table consists of the

determinant key and all other attributes which transitively

depend on this key as shown in Figure 9.

(A)

 R S T U

ST 1 2 2 1

(B)

 V W

V 2 1

 (C)

 M W X

W 1 2 1

(D)

 Q S V

S 1 2 1

(E)

 M P Q

Q 1 1 2

(F)

 M N O

M 2 1 1

V. RESULTS

Thus we obtained the given relational database in to third

normal form (3NF).While the manual approach and the

existing algorithms are much time consuming,

particularly the process of converting relations into 3NF,

but the given algorithm for automatic database

normalization is much more successful. The given

algorithms are observed with MPI and its implementation

results on EDM. It showed that such parallel approach

decreases the time efficiently [8]. Using p processors has

reduced the time of Automatic Database Normalization to

 in which n is the number of determinant keys,

m indicates the number of simple keys, and c is the

communication overhead between the processors.

VI. CONCLUSION

In this paper an automated relational database

normalization method is presented. We are doing

normalization of the given database by generation of

dependency matrix, determinant key transitive

dependency matrix and directed graph matrix.

Normalization upto 2NF, 3NF have been discussed in

details. A complete illustration of an example is given,

and the defined algorithms have been applied in order to

generate the desired final tables. As a side product of the

given algorithms, the automatic distinctive of one primary

key for each final table is generated. We believe that this

algorithm is very efficient as compared to the others

which we surveyed. In future we will compare it with

more algorithms. We are also applying this algorithm and

pseudocodes in developing a user friendly Graphical User

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 4, April 2018

 All Rights Reserved © 2018 IJERCSE 248

Interface (GUI). This GUI is used for normalizing

databases effectively taking varied user inputs.

REFERENCES

[1] M. Arenas, L Libkin, “An Information-Theoretic

Approach to Normal Forms for Relational and XML

Data”, Journal of the ACM (JACM), Vol. 52(2), pp. 246-

283, 2005.

[2] Kolahi, S., “Dependency-Preserving

Normalization of Relational and XML Data”, Journal of

Computer SystemScience, Vol. 73(4): pp. 636-647, 2007.

[3] R. Elmasri, S.B. Navathe. “Fundamentals of

Database Systems”, Third Edition: pp.490, 2000.

[4] Du H., and L. Wery, “A Normalization Tool for

Relational Database Designers”, Journal of Network and

Computer Applications, Volume 22, No. 4, pp. 215-232,

October 1999.

[5] Yazici, A., and Z. Karakaya, “Normalizing

Relational Database Schemas Using Mathematica”,

LNCS, Springer-Verlag, Vol.3992, pp. 375-382, 2006.

[6] Akehurst, D.H., B. Bordbar, P.J. Rodgers, and

N.T.G.Dalgliesh, “Automatic Normalization via

Metamodelling”, ASE 2002 Workshop on Declarative

Meta Programming to Support Software Development,

2002.

[7] A. H. Bahmani, M. Naghibzadeh, and B.

Bahmani. “Automatic database normalization and primary

key generation”, IEEE CCECE/CCGEI, pages 11–16,

May 2008.

[8] Amir -H. Bahmani, S.Kazem Shekofteh,

Mahmoud Naghibzadeh, Hossein Deldari, “Parallel

Algorithms for Automatic Database Normalization”,

IEEE/ICCAE, Publication, Year: 2010, Page(s): 157-161.

[9] Sungchul Lee, Juyeon Jo, Yoohwan Kim,

Haroon Stephen, "A Framework for Environmental

Monitoring with Arduino-Based Sensors Using Restful

Web Service", Services Computing (SCC) 2014 IEEE

International Conference on, pp. 275-282, 2014.

[10] Kunal Kumar, S. K. Azad, "Database

normalization design pattern", Electrical Computer and

Electronics (UPCON) 2017 4th IEEE Uttar Pradesh

Section International Conference on, pp. 318-322, 2017.

[11] Date, C.J., “An Introduction to Database

Systems”, Addison-Wesley, Seventh Edition 2000.

[12] S. Lucas, J. Meseguera, "Normal forms and

normal theories in Conditional rewriting", Elsevier

Journal of Logical and Algebraic Methods in

Programming, vol. 85, pp. 67-97, 2016.

[13] R. Vangipuram, R. Velputa, V. Sravya, "A Web

Based Relational database design Tool to Perform

Normalization", International Journal of Wisdom Based

Computing, vol. 1, no. 3, 2011.

[14] Moussa Demba, "Algorithm for relational

database Normalization up to 3NF", International Journal

of Database Management Systems, vol. 5, no. 3, June

2013.

[15] Ivan Ubaleht, "The design of relational database

schemes based on the elementary relationships of

attributes: Computing of the closure of a set of attributes

for one type of relationship", Engineering Computer and

Information Sciences (SIBIRCON) 2017 International

Multi-Conference on, pp. 360-364, 2017.

[16] W.-D. Langeveldt, S. Link, "Empirical evidence

for the usefulness of Armstrong relations in the

acquisition of meaningful functional dependencies", Inf.

Syst., vol. 35, no. 3, pp. 352-374, 2010.

[17] A. Yazici, Z. Karakaya, “Normalizing Relational

Database Schemas Using Mathematica”, LNCS, Springer-

Verlag, vol. 3992, pp. 375-382, 2006.

[18] Du H., and L. Wery, “A Normalization Tool for

Relational Database Designers”, Journal of Network and

Computer Applications, Volume 22, No. 4, pp. 215-232,

October 1999.

[19] Akehurst, D.H., B. Bordbar, P.J. Rodgers, and

N.T.G. Dalgliesh, “Automatic Normalization via

Metamodelling”, ASE 2002 Workshop on Declarative

Meta Programming to Support Software Development,

2002.

