
ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 4, April 2018

All Rights Reserved © 2018 IJERCSE 184

Through Packed Bcd Achieving Memory

Utilization Efficiently
[1] Dr.R.Viswanathan,

[2]
Chandrasegar.T,

[3]
P.Manjula

 [1]
Associate Professor,

[2][3] Assistant Professor
[1]

Galgotias University,
[2][3]

VIT University

Abstract: In the recent world most of the projects are involved with reducing the space complexity of the system. When the

memory is utilized efficiently then the outcome leads to less space. In this paper we proposed a new packed BCD algorithm to

manage the memory efficiently. Through this proposed algorithm around 50% memory wastage can be reduced and we can

maximize the utilization of memory just by reducing the space complexity. We intended to achieve memory utilization efficiently

using packed BCD.

I. INTRODUCTION

In the recent world most of the projects are involved with

reducing the space complexity of the system. Binary-

Coded decimal (BCD) which encrypts the digits 0 through

9 by representing 4-bit unsigned binary. Through this

algorithm we are intended to achieve memory utilization

by using Packed BCD.BCD is broadly divided into two

categories, Packed and unpacked BCD. In unpacked BCD

only one value can be inserted in a single byte. The digit

is stored in the least significant 4 bit and the most

significant 4 bits are not relevant to the value of being

inserted. While in compressed BCD two values can be

inserted into a single byte.

E.g.: In uncompressed BCD a number 91 can be stored as

follows:

Decimal: 9 1

Binary: 0000 1001 0000 0001

Binary: 1001 0001

We can reduce the above memory wastage by using

packed BCD.

0000 1001 0000 0001(Unpacked BCD) =1001

0001(Packed BCD)

The above example shows that how 2-byte unpacked

BCD number is packed into a single byte by creating a

packed BCD number. And so one reason to use packed

BCD is that it is twice as efficient in storing data.

II. LITERATURE REVIEW

Lung-Jen Lee [1] presents an idea about a new pattern

run-length compression Method is given whose

decompress or is simple and easy to implement. The

analytical results show that it can achieve an average

compression Ratio of 67.64%.The run-length-based

compression Algorithm encodes repeated pattern runs. It

encodes2|n| runs of compatible patterns. Christian

Patauner [2] presents a compression system optimized for

the reduction of data using pulse digitizing electronics.

Such systems are widely used in High Energy Physics

experiments.

HaroonAltarawneh [3] described the different methods of

data compression algorithms on English text files such as

LZW, Huffman and Fixed-length code (FLC).The

important principle of data compression algorithms on

text Files are to transform a string of characters into a new

string which contains the same information.

Wang Lei [4] proposed a new distributed algorithm of

data compression based on hierarchical cluster model for

sensor networks. The result of the above new algorithm

has got good performance of approximation can compress

data and also reduce the amount of data efficiently. Jacob

Ziv [5] considered the case where consecutive blocks of

N letters of an individual sequence X over a finite-

alphabet are being compressed into their binary

sequences. Here we have discussed the best possible

compression that may be achieved by any universal data

compression algorithm for finite N-blocks.

Kedarnath J. Balakrishnan [6] discussed relationship

between Entropy and Data Compression. The entropy is

the measurement of set of amount of data whose

information contained in it. In this paper we also extended

the concept of entropy for incompletely specified test

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 4, April 2018

 All Rights Reserved © 2018 IJERCSE 185

data. It has also been described the impact of partitioning

the test data into symbols on entropy.

Now a days Storing data in compressed form is becoming

Common in high-performance systems. In this paper it

has been suggested a hardware-assisted data compression

as a tool for reducing energy consumption of processor-

based systems. In this proposed algorithm we have also

described in details the architecture of the

compression/decompression unit presented in H Allen [7].

Luca Benini [8] represented how large numbers perform

basic arithmetic operations. The best way of representing

the large number is through the analysis of three types of

representation of numbers is through binary-coded

decimal, binary, packed binary-coded decimal. The

conclusion has been made on the basis of the analysis that

which number‟s representation is possible.

Maxime Crochemore [9] proposed a new text-

compression scheme is given on the basis of forbidden

Words “ant dictionary”. We have also shown that this

algorithm attain the Entropy for balanced binary sources.

One of the main advantages of this approach is that it

produces very fast decompresses .All the methods used in

this paper are from Theory of computation.

Tenkasi V. Ramabadran [10] explained the scheme for

compressing computer data by treating them as sequences

of bytes. An alphabet reduction Technique which permits

handling of each bit within a byte separately is also

introduced. The scheme allows the complexity of the

Source model, and thus compress the performance.

S. Rahil Hussian et al. [12] presented the reversible

implementation of DPD (Densely packed Decimal)

converter to and from conventional BCD format.

Conversion is smeared to the adder circuits everywhere

they follow BCD code for the arithmetic addition such

that converting them to DPD. It will result in the better

storage capacity by decreasing the less density of storage

devices for faster access to memory.

Er.Aradhana Raju et al. [13] illustrate the implementation

of the Densely Packed Decimal Encoding, projected by

M. F. Cowlishaw and simulate using available software

platforms. Then transmit the compressed data by using

secure communication technique.

M.Cowlihaw [14] presented a lossless compression which

converts three binary coded decimal (BCD) digits to 10

bits using an algorithm. Here simple Boolean operations

and functions is used in reversed BCD. Technique is not

restricted to multiples of three digits. In new system, use

any length of string efficiently while keeping decimal

digit boundaries accessible.

J.H.M. Bonten [15] describes a method of encoding

decimal numbers is known as Packed Decimal Encoding.

This technique is proposed to freeze out all vacant space

in the set of available bit-patterns. Normally this leftover

occurs when decimal digits are stored. Packed Decimal

Encoding method relies on a technique for compressing

decimals called Densely Packed Decimal (DPD).

Hafiz Md et al. [16] describes a method for the reversible

circuit of binary coded decimal (BCD) adder. Proposed

circuit has the capacity to add two 4-bits binary variables

and it converts the addition into the appropriate BCD

number with efficient error correcting modules where the

operations are reversible.

H. Che et al. [17] describes a dynamic range encoding

scheme (DRES) to considerably increase the TCAM

storage efficiency for range matching. DRES uses the

TCAM coprocessor itself to support range encoding. It

can be programmed in a network processor using a

TCAM coprocessor for packet classification.

Y.-K. Chang, C.-C. Su [18] describes a set of encoding

schemes based on Gray code. Encoding techniques are

used to improve the existing elementary interval- based

range encoding schemes. Experiment's results show that

the proposed Gray code-based schemes consume less

TCAM storage space than the existing schemes.

Stephen Hines [19] describes an architectural features and

complier optimization technique target one, two or more

design goals expense of the others. In this a novel

architectural and complier approach used to escape power

requirements, minimize code size, and improve

performance by adding an IRF (instruction register file)

into the architecture.

Yoshiyuki okada [20] describes a compression of lossless

data commonly use on personal type of computers for

increase storage capacity. When we take example, we can

get double of the normal capacity by using lossless data

compression strategies. In this research, it is very

necessary to locate compressed data of variable length in

a fixed –length block by little fragmentation as much as

possible.

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 4, April 2018

 All Rights Reserved © 2018 IJERCSE 186

III. PROBLEM DEFINITION

In this paper we are trying to achieve memory utilization

through packed BCD (Binary Coded Decimal) and

implementing the same using c language along with file

handling. In uncompressed BCD only one integer number

can be stored in a single byte thus there was wastage of

memory. Therefore packed BCD came into existence

here; we can store two integer numbers in a single byte

thus saving the memory space leading to memory

utilization efficiently.

IV. SOLUTION METHODOLOGY

In this paper we proposed a new algorithm for achieving

the objectives.

A. Algorithm

START

STEP 1 declare file pointers fp1 fp2

STEP 2 fp1:=open (file1)

 fp2:=open (file2)

STEP 3 if(!fp1 or !fp2)

 {//cannot open file...}

 else

STEP 4 read char a

 fp1=to_ascii(a)

 fp2:=to_hex (a)

 repeat STEP 4 untill a!='.'

STEP 5 print from starting fp1, fp2

STEP 6 END

B. Coding

#include<stdio.h>

#include<conio.h>

int main()

{

 char a;

FILE *fp_dec;

 FILE *fp_hex;

 fp_dec=fopen ("project.txt","w+");

 fp_hex=fopen ("project1.txt","w+");

 if ((fp_dec==NULL) || (fp_hex==NULL))

 {

 puts ("/nError in memory");

 //exit ();

 }

 else

 {

 while (a! ='.')

 {

 scanf ("%c",&a);

 fprintf (fp_dec,"%d",a);

 fprintf (fp_dec,"\t");

 fprintf (fp_hex,"%x",a);

 fprintf (fp_hex,"\t");

 }//end of while...

 rewind (fp_dec);

 rewind (fp_hex);

 printf ("\n\nThe ASCII representation

of the string is...\n");

 while (1)

 { a=fgetc(fp_dec);

 if(a==EOF)

 {

break;

}

printf("%c",a);}//end of while

printf("\n\nThe hexadecimal representation of the string

is...\n");

while(1)

{

a=fgetc(fp_hex);

 if(a==EOF)

{

break;

}

 printf("%c",a);

}//end of while

 }//end of else

 getch();

 }// end of main

C. Packed BCD to ASCII Conversion

Above program is written in 8051 C for transform Packed

BCD to ASCII and store bytes on C1 and C2

#include<reg51.h>

 void main (void)

{

unsigned char A, B;

unsigned char byte=0x29;

A=byte & 0x0F;

C1=A | 0x30;

B=byte & 0xF0;

B=B >> 4;

C2=B | 0x30;

}

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 4, April 2018

 All Rights Reserved © 2018 IJERCSE 187

D. ASCII to Packed BCD conversion:

8051 C program is written to convert ASCII digits of „3‟

and‟5‟ to packed BCD and store bytes on A1.

 #include<reg51.h>

void main(void)

{

unsigned char byte;

unsigned char X=‟3‟;

unsigned char Y=‟5‟;

X=X & 0x0F;

X=X << 4;

Y=Y & 0x0F;

byte=X | Y;

A1=byte;

}

Table 1 shows that ASCII code for digits o through 9

Key ASCII

(Hex)

Binary BCD

(Unpacked)

0 30 011 0000 0000 0000

1 31 011 0001 0000 0001

2 32 011 0010 0000 0010

3 33 011 0011 0000 0011

4 34 011 0100 0000 0100

5 35 011 0101 0000 0101

6 36 011 0110 0000 0110

7 37 011 0111 0000 0111

8 38 011 1000 0000 1000

9 39 011 1001 0000 1001

Table 1 ASCII Code for digits 0-9

V. RESULT

Graph 1 shows that efficiency of modified packed BCD is

superior than standard packed BCD in terms of time.

Efficiency and time is measured in percentage and milli

seconds. Blue line and Green line indicates standard

packed BCD and modified packed BCD simultaneously.

Graph 1 Standard Packed BCD v/s Modified Packed

BCD

VI. EXPERIMENT

Input From User: abcdefghijklmnopqrstuvwxyz

2345678910

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Table 2 ASCII representation of the string

61 62 63 64 65 66 67 68 69 6a

6b 6c 6d 6e 6f 70 71 72 73 74

75 76 77 78 79 7a a 31 32 33

34 35 36 37 38 39 31 30 a 41

42 43 44 45 46 47 48 49 4a 4b

4c 4d 4e 4f 50 51 52 53 54 55

56 57 58 59 5a 2e

Table 3 Hexadecimal representation of the string

CONCLUSION

In this paper we are emphasizing mainly on minimizing

the memory wastage. From this paper we came to many

results among all we are giving much importance to

memory utilization. Based on the entropy analysis of the

file we can increase the compression ratio which is further

matter of analysis. We came to few results using this

algorithm although it needed to be further implemented in

future.

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70

E
ff

ic
ie

nc
y

Time(ms)

97 98 99 100 101 102 103 104 105 106

107 108 109 110 111 112 113 114 115 116

117 118 119 120 121 122 10 49 50 51

52 53 54 55 56 57 49 48 10 65

66 67 68 69 70 71 72 73 74 75

76 77 78 79 80 81 82 83 84 85

86 87 88 89 90 46

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 4, April 2018

 All Rights Reserved © 2018 IJERCSE 188

REFERENCES

[1] Lung-Jen Lee, “2n Pattern Run-Length for Test

Data Compression", IEEE Transactions on Computer-

Aided Design Of Integrated Circuits and Systems, Vol.

31, No. 4, April 2012.

[2] Christian Patauner, "A Lossless Data

Compression System for A Real-Time Application in

HEP Data Acquisition", IEEE Transactions on Nuclear

Science, Vol. 58, No. 4, August 2011.

[3] Haroon Altarawneh, " Data Compression

Techniques on Text Files: A Comparison Study",

International Journal of Computer Applications (0975 –

8887), Volume 26– No.5, July 2011.

[4] Wang Lei, “Data Compression Algorithm Based

On Hierarchical Cluster Model for Sensor Networks”,

International Journal of Advanced Science and

Technology Vol. 2, January, 2009.

[5] Jacob Ziv, “On Finite Memory Universal Data

Compression and Classification of Individual Sequences",

IEEE Transactions on Information Theory, Vol. 54, No.

4, April 2008.

[6] Kedarnath J. Balakrishnan, “Relationship

between Entropy and Test Data Compression", IEEE

Transactions on Computer-Aided Design of Integrated

Circuits and Systems, Vol. 26, No. 2, February 2007.

[7] H. Allen, “Representation of the Large Numbers

with accounting Of Microprocessor Capacity", 6'b

International Siberian Workshop and Tutorials Edm'2005,

Session V, July 1-5, Erlagol.

[8] Luca Benini, "Memory Energy Minimization by

Data Compression:Algorithms, Architectures and

Implementation", IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, Vol. 12, No. 3, March 2004.

[9] Maxime Crochemore, "Data Compression Using

Antidictionaries“, Proceedings of the IEEE, Vol. 88, No.

11, November 2000.

[10] V.Tenkasi, Ramabadran, “An Adaptive

Algorithm for the Compression of Computer Data", IEEE

Transactions on Communications, Vol31. No. 4, April

1989.

[11]

 http://academic.evergreen.edu/projects/biophysic

s/technotes/program/bcd.htm.

[12] S. Rahil Hussian et al., “VLSI Implementation of

Densely Packed Decimal Converter to and from Binary

Coded Decimal using Reversible Logic Gates”,

International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622.

[13] Er.Aradhana Raju , Purabi Mahato , Ritto K.

Babu , Richi Patnaik, “Secure Communication With

Lossless Data Compression Using Dpd Encoding”,

IJMER, ISSN: 2249–6645, Vol. 6, Iss. 5, May 2016.

[14] M.Cowlihaw, “Densely packed decimal

encoding, Computers and Digital Techniques”, IEEE

2002.

[15] “Packed decimal encoding” IEEE-754-2008 by:

J.H.M. Bonten.

[16] Hafiz Md., H. Babu and A. R. Chowdhury,

"Design of a Reversible Binary Coded Decimal Adder by

Using Reversible. 4-bit Parallel Adder"', 18th Int. Conf.

VLSI Design, pp. 255-260, 2005.

[17] H. Che, Z. Wang, K. Zheng, B. Liu, "Dres:

Dynamic range encoding scheme for tcam coprocessors",

IEEE Transactions on Computers, pp. 902-915, 2008.

[18] Y.-K. Chang, C.-C. Su, "Efficient team encoding

schemes for packet classification using gray code",

GLOBECOM'07, 2007.

[19] Stephen Hines, “Improving program efficiency

by packing instruction into registers”, International

symposium on computer architecture, 2005.

[20] Yoshiyuki okada, ”Effective management of

compressed data with Packed files System”, Data

compression conference, 1997.

