
ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 4, April 2018

All Rights Reserved © 2018 IJERCSE 160

Sql Injection Attack Prevention Methodology
[1]

 S.Deepica,
[2]

T.Edison,
[3]

Dr.R.Viswanathan
 [1][2] Assistant Professor,

[3]
Associate Professor

[1][2][3] Galgotias University

Abstract: Structured query language injection is a process through which one can intrude the database of a software application

(mostly in web applications) through the application’s user interface. By adding or editing strings to the SQL query, injection is

performed, thereby hacking sensitive user details. The hackers can even create humongous problems by dropping the entire data in

the database. The hacker deeds all the security susceptibilities in the injection. When the user input is not captured sturdily and

executed unexpectedly, injection could happen.

 Key words-Vulnerability, Injection Attack, Secret Key, Private Key.

 INTRODUCTION

In the current working scenarios of information

technology, any organization is compelled to give more

priority to the data security to protect their data from

illegal access from the hackers. For any organization, this

is the foremost challenge. The companies are even

involved in creation of dedicated sections with ethical

hackers for their firms; By doing so they will be able to

get to know about the vulnerable areas in their

application‟s security. Organizations ranging from

startups to Multi-national companies are actively involved

in this process. There are even dedicated organizations

which provide ethical hacking as a service to other firms.

Improper user input data validation is a key security

vulnerability issue, if the hacker discovers the availability

of minimal security constraints about the format, range

and the length of data.

The hacker can trigger a malevolent input using wild

cards and single quotes to conciliate such vulnerable

application's security. Such attacks are possible only in

the public interface. A SQL injection attack is usually

referred to as SQLIAs. Apart from structured query

language injection, other hacking techniques which are

available are Cross site scripting, Denial of service,

Buffer overflow, Key logger, Denial of Service

(DoS\DDoS), Waterhole attacks, Fake WAP,

Eavesdropping (Passive Attacks), Phishing, Virus, Trojan,

Click-Jacking Attacks. The rage of their usage is provided

in the following figure. From the figure we understand

that Cross site scripting is the most widely used hacking

technique used by the attackers. But details about Cross

site scripting is not explained in this section as it is out of

scope of the problem that has been discussed in this

paper.

Techniques used by attackers

In SQLIAs, the hackers usually access the input strings

that are specially encoded database instructions. During

the execution of web application, when the query which

contains the encoded database commands are sent to the

database, the attack gets succeeded because the embedded

commands which are contained with the syntactical

elements of SQL, gets executed by the database. The

awful consequences of this attack could lead to

compromising the sensitive client data, leakage of top

business secrets or even annihilation of the entire database

contents. SQLIAs have become a very serious security

issue due to the availability of unrestricted access to the

application's database

2. PREVENTIVE METHODS

To prevent SQL injection for Web Application following

Methods are there- Syntax Aware Evaluation

•Do not trust whatever the user enters. Strict type

checking is vital.

•If you expect user name to be entered, then check

validation whether it contains only alpha-numerical

characters.

•Set length limits on any form fields on your site and most

importantly don‟t use real column names which would be

a blunder.

•Use pre-prepared statements for the execution of the

queries.

•Must not allow multiple queries for execution in a single

statement i.e. joint queries shouldn‟t be permitted.

• For Example: - SELECT * FROM story_author_table

WHERE sID=999 AND a. aID=s.aID UNION ALL

SELECT 1,2,3,4,5,6, name FROM sysObjects WHERE

xtype=‟U‟] This type or multi joint queries should be

restricted.

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 4, April 2018

 All Rights Reserved © 2018 IJERCSE 161

•Don‟t leak the database information to the end user by

displaying the “syntax errors” only display check box

errors etc. This would lead to a way through

which the hackers could an insight about the

underlying database details.

Distinct Input Techniques:

This technique includes some restriction to the given

input method for example special characters, case

sensitive, maximum number of characters (50), minimum

number of characters (8) etc.

•Allow only unique and difficult words to guess table and

column names. Using simple names for the table and

columns make the application less secure

•Use aliases in the query. This will prevent the explicit

display of columns used in the queries.

•Escape or filter the special characters and user inputs rise

error check box error if any found,

•Validate all your data on the server side at a minimum

for content, length and format. This could also be done in

addition to the implemented client page level validation if

any.

SQL signature

We found that for every web application there must be

minimum privileges to access that data.

Inputs Validation

Client system level Ajax validations should also be used

in addition to the server level validation. The end-user

should always be provided with the access as per his/her

role. Providing a super-user access to the normal user of

an organization increases the risk of exposing the

application to security vulnerabilities. Restricted access

can be implemented by creating separated system roles

which is the duty of a system security analyst or

consultant. System administrator access should be

provided to the security analysts who actually take care of

the role assignments to the other members of the

organization.

Underlying techniques Encryption technique for

Prevention of SQL injection:

Encryption technique can be deployed for the prevention

of SQL injection. This method proposes Advance

Encryption Standard (AES) for preventing structured

query language injection Attacks. These techniques are

based on secret key and private key. Secret key is used

by user always and private key is used by the server.

These keys are always unique for every user.

In this method we apply two levels of encryption to the

login Query by making use of the secret key and private

key-

A. Symmetric key encryption for user name and

password by using user‟s secret key.

B. Asymmetric key encryption for query by using

server‟s private key.

Below are the various phases and their corresponding

activities which are performed by means of secret key and

private key which are involved for registration/login

process:

Registration phase:

In this phase following steps are included-

•Whenever a new user wants to join the server, then user

must select unique User Name and Password along with

the registration request.

•Server receive user request, then generate unique secret

key for that particular user. Server maintains a table

which contains columns as username and password and

unique key as shown below in table-1.

•Then server will send the registration confirmation along

with the secret key.

Login phase:

In this phase user will be able to login to the web page by

providing the login credentials created during the process

of registration. In other words, user can now access the

data base, which include following steps-

•User name and password which is entered by user will be

encrypted by AES Advanced Encryption Standard by

applying user secret key.

•Then SQL query generator generates the query by using

the inputs attached with secret key.

•Then query result is encrypted using RSA cryptosystem

which added private key and send that encrypted key to

the server.

For example Query result= SELECT * FROM user

account WHERE username = „abc‟ AND password =

„xyz‟ AND encrypted username = „ESecretKey (abc)‟

AND encrypted password = „ESecretKey (xyz)‟

In the query, you can observe that in addition to usage of

username and password, encrypted username and

encrypted password is also used in the WHERE condition

thereby preventing the execution of any embedded

database instruction sent by the attackers through the user

interface of the web application.

Verification phase:

It is the phase which includes the final and most important

process which happens on the server. The following steps

are involved in the verification phase:

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 4, April 2018

 All Rights Reserved © 2018 IJERCSE 162

•When the server receives the login query in encrypted

form, it tries to decrypt it. Decryption of the query will be

performed using the Server private key.

•It then verifies the corresponding query, password

and also the user's secret key.

•Check the decrypted user name and password from the

user account table.

•If matches, then accept the user login request.

Figure 1.How to Apply AMNESIA

The Prevention of SQLIA‟s/;

In this paper we discuss about the technique called

AMNESIA; The ways to make use of it, and the

limitation of this technique is discussed:

Introduction

AMNESIA (Analysis and Monitoring for Neutralizing

SQL-Injection Attacks), is a mechanism, used to prevent

SQL injection attack by checking each query with the pre-

defined model of that query developed by the

administrator. In this approach the key thing is that it uses

both static analysis and dynamic monitoring, which can

be explained through following points: -

•It generates a static model of every query used by the

web-based application.

•When the user fetches any data on the website than it

checks the dynamically created query with the static

model

•If the query violets the static model generated in prior, it

classifies it into a structured query language injection

attack.

•Identify Hotspot:- According to this we have to find out

what are the places where in website any database query

is executing, and then we have to give an unique Id no. to

that spot. We have to ensure that none of the database

queries are missed since such misses could have other

side-effects during the model construction.

•Construction of Models: - For every Hotspot the

administrator should develop a static model which can be

cross checked. The model will be a NDFA (Non-

Deterministic Finite Automata). The Non-Deterministic

Finite Automata will have the transition labels as

placeholders, tokens, limiters. For eg- Figure 1.

•Inserting a monitoring Function call:- In this we will

insert a Function call for each and every hotspot we

defined. This function will be having 2 arguments,

hotspot id and the query.

Secure the hotspot by this function

•Execution of Query:- Our application will run as usual

until any of the hotspot comes. When the hotspot arrives

it will divide the query in blocks as given figure 2, and

then compare it with the static model. If both are same

then it will execute the query else it will term it as a

SQLIA. For eg:- In figure 3 the query (a) will execute and

(b) will be rejected.

(a).SELECT info FROM user WERE login = „doe‟ AND

pass = „xyz‟

Fig 2

(b). SELECT info FROM user WERE login = “OR 1 =

1 ..‟AND pass =”

Fig 3

Limitations

According to our mechanism a query is made by

arranging strings in an ordered way. According to

AMNESIA the developer should create queries by the

combination of constant strings and variable with

concatenation, appending and insertion. But the

mechanism fails when the application that externally

stores the query related strings in files, and the

mechanism can be violated with good engineering

capabilities.

It will also produce a false output if it cannot recognize

the keyword as constant string and then it judge it as a

SQLIA‟s. By making use of operations such as insertion,

concatenation and appending for combining variables and

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 4, April 2018

 All Rights Reserved © 2018 IJERCSE 163

strings which are hard-coded queries are created. But it is

to be noted that, though this assumption makes it difficult

to use AMNESIA, it is not a much restrictive assumption.

Using suitable engineering, this assumption related to

implementation can be prevented. At times, this technique

can create incorrect negatives and positives. In-correct

positives results might occur when the analysis of the

string is not precise. Incorrect negative results might

occur spurious queries are contained in the model

generated for SQL query and if the hackers are capable

enough to generate the spurious queries. An experimental

evaluation of the concept was performed to check the

practicalities of the limitations discussed. AMNESIA's

performance was excellent in the evaluation; Almost 7

applications were tested for different types of attacks and

illegal access. False positive or negative results were not

generated.

3. SQL injection prevention using parse tree algorithm

The parsed tree is a data structure for representing our

SQL statement. Parsing needs to check the grammar of

the statement‟s language and we can determine that two

queries are equal or not, by parsing two statements and

comparing their parse trees.

Fig 4

When a hacker tries to inject a SQL query in database

query then parse tree of the intended SQL query and the

hacker query do not match. The mean is that only when

the programmer inserts the query for database the

structure of query is predefined. The empty leaf node of

the parse tree is used for user‟s input.

SELECT * FROM users WHERE username=? AND

password=? The question marks are place holders for the

leaf nodes she requires the user to provide. While many

programs tend to be several hundred or thousand lines of

code, SQL statements are often quite small. This provides

the opportunity to parse a query without adding

significant overhead.

Dynamic queries many web applications which allow the

user to shift through tabular results permit sorting the

table by any of the columns. Our approach uses the

dynamic query concept. As we know the user can give a

dynamic input that is he wants to have a output based on a

particular condition which he can give using where clause

(WHERE subject like „%input%‟). So that the query is

not statically bound; if we have to search anything on

internet, every user has a different search and for this the

query is also dynamically created so here we cannot use

static query methods for prevention SQL injection. We

can also take another example. Let‟s consider that, we

have to display the output in an ordered way. If the user

wants the table to be shown in some particular order he

has to use ORDERED BY column1 and column2, since

here the order is chosen by the user, so it also became a

dynamic query and our algorithm can very well satisfy

these conditions. One significant advantage over static

methods is that we can evaluate the exact structure of the

intended SQL query. Many times this structure itself is a

function of user input, which does not permit static

methods to determine its infrastructure. An example is a

search page. One popular free web-based email tool

allows users to search through their messages for

particular content. This search may or may not include

searching through the email body, subject, from field, etc.

Typically in these types of searches, if the user leaves one

or more of these fields empty, the code does not

incorporate them into the SQL query. Normally the

programmer will append inputs from these fields on the

WHERE portion of the query, such as WHERE subject

LIKE '%input%'.

Comment Token Inclusion:

There is a special case of attacks which plays an

important role that is the solution is compared with parse

tree when in the user supplied fields values have not been

inserted and after values are

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 4, April 2018

 All Rights Reserved © 2018 IJERCSE 164

Figures 1, 2 and 5. The original query is given in Figure

1, with two user-supplied fields (shaded gray). If the user

were to supply greg' AND password='secret' { { for the

username field and tricky for the password field, the

resulting parse tree would be as in Figure 2. The potential

vulnerability is that the programmer may assume that

since the query parsed properly, the value stored in the

request object's password field is the same value which

was used to build the query. While the data returned by

the query is proper, the state of the program is most likely

not the state assumed by the programmer. Fortunately, our

parse tree mechanism catches this subtle hazard. The

solution is to include the comment as a token in the parse

tree. Figure 5 is the result from the same input, with this

comment token included. Because the original query does

not have a comment token, the resulting parse tree is no

longer a match. This does not restrict the programmer

from annotating queries. Had a comment existed in the

original query, the parse would still have failed because

the value (string literal value) of the two tokens would not

be equal.

CONCLUSION:

As we come to know that it is not too difficult to prevent

SQL injection attacks. By simply following the steps

above, we can reduce the

chances of any SQL injection attack against your Web

application, if developers are made just little awareness of

these points. Its only requires a little bit changes in their

coding style to prevent not only SQL injection attacks. In

our experience, developer training has been very helpful

in increasing their understanding of websites attacks and

vulnerabilities. The result normally an improved and

maintained security and development teams that leads to

more secure websites.

REFERENCES

[1] "Neha Singh and Ravindra Kumar Purwar ” SQL

Injection –A Hazard To web applications”, in

International Journal of Advanced Research in computer

Science and Software Engineering, vol.2, Issue 6,June

2012, pp. 42-46.

[2] Permulasway Ramasamy and Dr.Sunitha

Abburu “SQL Injection attack detection and prevention”

in International Journal Of Engineering Science and

Technology(IJEST), vol.4, April2012, pp.1396-1401.

[3] William G.J. Halfond, Jeremy Viegas, and

Alessandro Orso, ”Classification of SQL Injection

Attacks and counter measures”, ISSSE 2006, March 2006.

[4] San Tsai Sun, Ting Han Wei, Stephen Liu and

Sheung Lau, “Classification of SQL Injection Attack”

Nov 2007.

[5] Nilesh Khochare, Santosh Kakade and

B.B.Meshramm, “Survey on SQL Injection attacks and

their Counter measures” IJCEM international Journal of

Computational Engineering &

Management,ISSN(Online):2230-7893,vol.14, October

2011, 111-114.

[6] William G.J.Halfond and Alessandro Orso,

“AMNESIA Analysis and Monitoring for Neutralizing

SQL Injection Attacks” November 7-11, 2005.

[7] Atefeh Tajpour, Suhaimi Ibrahim, and

Mohammad Sharifi, ”Web Application Security by SQL

Injection Detection Tools”, IJCSI International Journal of

Computer Science Issues, vol.9, Issue 2, NO.3, March

2012

[8] Diallo Abdoulaye Kindy and Al-Sakib Khan

Pathan, ”A Detailed Survey on various Aspects of SQL

Injection:Vulnerabilities”, Innovative Attacks, and

Remedies accepted version for information journal, 2010.

[9] Abhishek Kumar Baranwal, “Approaches to

detect SQL Injection and XSS in web applications”,

IEECE 571b, Term Survey paper, April 2012.

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 4, April 2018

 All Rights Reserved © 2018 IJERCSE 165

[10] V.Shanmughaneethi and S.Swaminathan

”Detection of SQL Injection Attack in web applications

using web services”, IOSR Journal of computer

Engineering(IOSRJCE) ISSN:2278-0661, volume 1, Issue

5,May-June 2012, pp.13-20.

[11] Atefeh Tajpour, mohammad JorJor zade and

Shooshtari”, Evaluation of SQL Injection Detection and

Prevention Techniques”, IJSCE vol 3, march 2015.

[12] Katkar Anjali S and ,Kulkarni Raj B.”Web

Vulnerability Detection and Security Mechanism”

,International Journal of Soft Computing and

Engineering(IJSCE)ISSn:22312307, volume-2, Issue-4,

September2012, pp.237-241.

[13] Anyi Liu , Yi Yuan , Duminda Wijesekera ,and

Angelos Stavrou, “SQLProb: A Prloxy-based

Architecture towards Preventing SQL Injection Attacks”

IJCEM international Journal of Computational

Engineering & Management,ISSN(Online):2230-

7893,vol.14,October 2013,111-114.

[14] Atefeh Tajpour , Suhaimi Ibrahim, and

Mohammad Sharifi, ”Web Application Security by SQL

Injection Detection Tools”, IJCSI, International Journal

Computer Science Issues,Vol.9, Issue 2,No.3,March

2012,332-339

[15] Stephen W. Boyd, Angelos and D. Keromyti,

“SQLrand:Preventing SQL Injection Attacks” oct 2011

[16] Devata R. Anekar and Prof. A. N. Bhute ”SQL

Injection Detection and Prevention Mechanism using

Positive Tainting and Syntax Aware Evaluation,”

International Journal of Advances in Computing and

Information Researches, ISSN:2277-4068, Volume 1–

No.3,August 2012

[17] William G.J.Halffond and Alessandro

Orso”Preventing SQL Injection Attacks

UsingAMNESIA”ICSE,2006,Shanghai,China

[18] Etinene Janot and Pavol Zavarsky ”Preventing

SQL Injection in

onlineapplications,”Study,Recommendations and Java

Solution Prototype based on SQL DOM,Application

Security Conference,Belgium,19-22 May 2008.

