
ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 4, April 2018

All Rights Reserved © 2018 IJERCSE 85

An Efficient Virtual Memory Using Graceful Code
[1]

 P.Manjula,
[2]

Chandrasegar.T,
[3]

Dr.R.Viswanathan
 [1][2]

Assistant Professor, VIT University,
[3]

Associate Professor, Galgotiasuniversity

Abstract: Memory is hardware that is used by computer to load the operating system and run programs. It is buildup of RAM chip

that has different memory modules. The amount of main memory in a computer is limited to the amount of RAM that has

installed. Generally memory sizes are 256 MB, 512 MB, & 1 GB, because of computer has limited amount of RAM. When too many

programs are simultaneously it is possible to run a program out of memory. This is the concept where virtual memory comes.

Virtual memory enhance the available memory of a computer has by enlarging the address space or place in memory where data

can be stored. Hard disk is used for additional memory allocation .However, since secondary storage is much slower than the

RAM, program which is in Virtual Memory must be mapped back to virtual memory in order to be used. The process of mapping

data and forth between the hard disc and RAM takes longer than accessing it directly from the memory. It means virtual memory

is increased, the more it will slow your computer down. While virtual memory enables your computer to run more than one

program it could, otherwise it is the best way to having as main memory as possible.

Index Terms- Addressing, Mapping, Swapping, Graceful code, Segmentation.

I. PROBLEM DEFINITION

 We are having 64 MB Main Memory and 1 GB Virtual

Memory. To run a program we need 512 MB RAM .Here

32 MB of Main memory is reserved for operating system

and application files, so free space is 32 MB. Program an

active portion is only loaded in main memory that is 33 to

64 MB .Hence remaining program (passive portion) i.e.

512- 32 MB loaded on Virtual memory. To keep Track of

this file active and passive portion of a program GCC is

coming into this picture. Save 128 MB Active location is

(128*1024) is addressed onto the virtual memory by GCC

through its constant factor.

II. INTRODUCTION

Virtual Memory is a main factor of operating system that

provides all the facilities of a process to use RAM

(memory address space) that is completely independent of

other process running simultaneously and uses space that

is larger than the actual amount of RAM. Virtual memory

combines active RAM and inactive hard disk to form a

larger range of contiguous address. Virtual memory is a

technique used to develop for multi-tasking. Virtual

memory allowing designing a program that behaves like

directly addressable memory RAM. Virtual memory

specifies each application program easier by hiding

fragmentation of main memory or to access memory with

relative addressing. Virtual memory is generally a concept

of generalization of memory virtualization. Virtual

memory used not to extend RAM, but to make an

extension as easy as possible for users to use. Virtual

memory is specialized to design to automate the

movement of data and code between secondary memory

and RAM to give the appearance of a single large store.

When program code exceeds the main memory size, this

technique is used to simplify the programmer‟s job.

Virtual memory eliminates external fragmentation and

minimizes internal fragmentation.

III. LITERATURE REVIEW

Liang Shi et al. [1] presented the main use of flash

memory is being widely used in mobile devices and

embedded system .Flash memory is small and light

weight from factor, low power consumption and shock

resistance ideal candidate in replacing traditional hard

disk as the storage device flash memory emphasis

asymmetric speed of read and write operations .Write

operation on flash memory is related with erase operation.

In Flash memory based system virtual memory

management is use to reduce the number of write

activities and improve input /output performance

traditional management strategies and virtual memory are

designed based on hard disk as storage system.

Flash memory can reduce the page swapping cost

significantly, Flash memory is a good device for use as

swap space in virtual memory .Flash memory supports

read, write and erase commands. A flash memory page if

it is already been written It cannot be overwritten, and the

corresponding block should be erased before data is

written to the page. These constraint are known as „erase-

before-write‟ constraint proposed in Seunggu Ji et al. [2]

In order to reduce the execution cost of a program, a data

segmented program and program‟s code is to be

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 4, April 2018

 All Rights Reserved © 2018 IJERCSE 86

rearranged in virtual address space, this technique is

called as program restructuring. Virtual memory is used

to increase the capabilities and, makes potential computer

system, and is divided into two parts hierarchical

organization built up of small, fast primary memory and

large slow secondary memory. In Paged virtual memory

system, a program‟s or user application‟s virtual address

space divided into matching size page and main memory

is divided into equal size chunks called page frames. The

main object of program restructuring increases page

memory utilization decrease the number of page faults

and space time execution cost of executing program. A

static program restructuring is accomplished at before

loading time, information collected by interpreter

described in Stephen J. Hartley et al. [3].

Steven P.Smith & John Kuban et al. [4] describe the

performance of page based virtual memory system is

influenced by page fault frequency. Now inestimable

energy has gone to decrease the hit ratio of virtual to

physical address mapping. Imaginary memory is typically

divides into pages of equal size, and transfers from disk

into physical memory has made in units of pages. When a

virtual address referenced which is not currently in

physical memory, a page replacement algorithm is used to

determine which page currently in main memory is

replaced by referenced page. Simulation references

behavior is quantified through analysis of address traces

taken from APOLLO then address traces were collected

using I.M.S (integrated measurement system) .The

address traces were used in virtual memory system using

the LRU replacement algorithm. Through software

modeling approach page size and physical memory

capacity can be easily varied to access the effect on

overall performance.

Rafal Kolanski et al. [5] Presented Virtual memory or

Imaginary memory is a concept of secondary memory, it

is treated as primary memory. Virtual memory is used to

complete the process when RAM is not enough to run the

process that time we requires secondary memory that

becomes primary memory until the process is not

completed, called virtual memory.

Bensoussan,R.C.Daley et al. [6] presented Multics

emphasis direct to hardware addressing by user and

application and system programs of all information, that

is independent of its physical storage. A no. of techniques

is being used by 2.6 Linux kernel that improves the large

amount of memory .This article emphasis on some

important changes includes reverse mapping that includes

for page reclaim, large memory pages, storage of page

table entries in memory. Memory which is used by kernel

increases efficiency, flexibility and stability of memory

manager. In the earlier system it has been a need for more

memory than exist physically in a system. To overcome

this drawback, a successful aspect we get that is virtual

memory. Kernel is used to write the contents of currently

unused block of memory to the hard disk .so the memory

can be used for some purpose presented in Hartley S.J.

[7].

The early days of computing, Accounting to the size of

program, the limited amount of physical memory posed

the evaluation of Virtual Memory. The management of

physical memory got hidden inside the operating system,

and an address space backed by physical memory and

secondary storage in which the programs were placed.

Paging a concept of memory can be used to free by the

application, if it is involved in physical memory. Most of

the applications use algorithms that are use a as elastic in

terms of their ability the usage of other resources.

Database and web browsers maintain the memory cache

of disk can increase performance by enlarging the cache.

A useful extension model of this preferences uses page

replacement algorithm, so that real time applications only

when only when memory pressure is secured, and

daemons becomes alternative users for page eviction

presented in Sitaram lyer [8].

Yousef A.Khalidi et al. [9] presents an Implementation of

Virtual Memory in current system such as SUNOS, VMS,

NT, MACH and CHORUS share two concept regarding

Main Memory Management. There is one page size, each

size may be multiple of Main Memory Unit page size,

each page size range can be 512 – 8k bytes. Physical

Memory is not very large. Somewhere like the range o0f

4M-256 M bytes. Main Memory Replacement algorithm

are normally turned for the common size. TLB

(Translation look aside) buffer is a cache of virtual to

physical address translations. It is typically used to reduce

the average address translation time. When required

Translation is not in TLB a software and a hardware miss

handler is executed to enter the translation in TLB.

In embedded system virtual memory has been known as

elegant mechanism for transparent hardware resources

sharing and utilization. The address space accessed by the

program is referred to as virtual address space and that is

divided into equally size virtual page, which are

converted into actual physical page .Each and every

virtual page is identified by a set of significant virtual

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 4, April 2018

 All Rights Reserved © 2018 IJERCSE 87

address bits also known as virtual page number i.

similarly virtual pages are identified by their physical

corresponding physical page number .Many contemporary

high ended processor such ARM9 & X scale ,offers a

hardware that supports for virtual memory in the form of

main memory unit which captures the most frequent

address translation. System software usually maintain a

data structure which provides the mapping between

virtual pages in the application address space and frames

in the physical memory. This page table is treated as data

structure, is always used in tabular form which occupies a

signify memory and traverse hardware .Main Memory

Unit cannot Provide the physical address when it is

missed presented in X.Zhou and P Petrov [10].

Hung-Wei Tseng et al. [11] presented the effects of the

subpaging method and storage cache management. A full

page is written back to the secondary storage on a page

fault in the traditional virtual memory system. M. Huang

et al. [12] describes an energy-management framework

that challenges both energy efficiency and temperature

control in a unified manner. This approach is called

Dynamic Energy Efficiency and Temperature

Management (DEETM). Framework combines several

energy-management techniques and can activate them

groups or individually in a fine-grained manner according

to a given rule.

R.M. Jones [14] compares results that have been attained

for several virtual memory swapping algorithms.

Algorithms were tested as software components of a

multiple computer on-line system. C. Park et al. [15]

present energy-aware demand paging technique to

decrease the energy consumption of embedded systems

seeing the characteristics of interactive embedded

applications with large memory footprints. And also

describes a page replacement policy which can decrease

the number of write and erase operations in NAND flash

memory.

Hiroshi Tezuka et al. [16] illustrate pin-down cache

technique for zero-copy message communication. It

reclaims the pinned-down area to decline the amount of

calls to pin-down and free primary one. This technique

applied in the low-level communication library on the

RWC PC Cluster II.

Giuseppe Psaila [17] presents a Virtual DOM which is a

Java package provides an effective representation

technique for large XML documents. It accepts a

specifically designed virtual memory technique- memory

blocks allotted to denote the document are exchanged by

skipping the operating system swapping mechanism.

Actual main memory needs are under control, the

thrashing phenomenon is avoided even for large

documents.

IV. ADDRESS MAPPING AND TRANSLATION

Virtual Memory mapping using graceful code is the

diversity of communication model .It provides concurrent

access the active portion of a program which is in main

memory, and provides a way to run the program

successfully with the help of virtual memory.

Another feature of address space is mapping and

translations, often consist of number of layers. It means

that higher level must be translated to lower level ones in

some way. For example: on a logical disc file system

operates linear sector numbers, which have to be

translated. Address Mapping maps logical address to

physical address presented in Dr. Vivek Chaplot [18].

CPU scrutinizes any virtual address which classify the

address into three fields

0 11 12 21 22 31

Offset into

Page Frame

Index into

Page Table

Index into Page

Directory

1. Page Frame- This field occupies 12 bits. It provides

offset to one of 4096 bytes in Page frame

2. Page Table -This field occupies 10 bits. It selects one

of 1024 array entries in page table

3. Page Directory This field occupies 10 bits. It selects

one of 1024 array entries in page directory

Address in virtual memory consists of logical_page, offset

and page_size. Logical_page denotes page number within

the logical address space, offset defines the offset into that

page and page_size means the size of the page (which is a

multiple of 2).

In Figure 1. P defines Page Number, O denotes Page

offset and F means Page Frame. There are two types of

Virtual address translation

1.Virtual Address Translation Using TLBs

When a program makes a memory reference, the virtual

address directed to the TLB to determine if it contains a

translation for the address presented in Yaman Cakmakci

et al. [19]. For TLB hit, returns the physical address of the

data, and the memory reference continues. For TLB miss,

system searches the page table for the translation.

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 4, April 2018

 All Rights Reserved © 2018 IJERCSE 88

2. Virtual address translation using page registers

Register in each frame comprising three bits. Residence

bit shows whether or not the frame is occupied, Occupier

defines page number of the page occupying and

Protection bits described in Hanna Alam et al. [20]

Figure 1. Maps Virtual address to Physical address

V. SOLUTION METHODOLOGY

Virtual address space is memory mapping mechanism

available in operating system, which provides a

relationship between physical memory and virtual

memory presented in Andon coleman et al. [22].

It provides security through process isolation. An address

generated by process is called logical address (virtual

address) and is mapped virtual address space.

Address space defines a range of discrete addresses, each

of which may correspond a network host, peripheral

device, disk sector or logical and physical entity presented

in Pinchas Weisberg et al. [21].

In the below figure we are having 64 MB Main Memory

and 1 GB main memory. Here our program length is 512

length. To run a program we need 512 RAM. But here

available RAM is only 64 MB. Where 32 MB is reserved

for operating system and application files. And remaining

space is lifted of 32 MB. So current program‟s active

portion is only loaded in main memory that is 33 to 64

MB. Hence remaining current program„s passive portion

is (512-32) MB loaded on virtual memory. Active and

passive portion of current program is completely divided

in maim memory and virtual memory respectively. To

keep track of active and passive portion of a program, we

use graceful code.

Figure 2. Virtual memory mapping using graceful code

To find the actual address of an instruction using formula:

Actual address of an instruction = Length of instruction

/number of blocks

VI. ALGORITHM FOR GRACEFUL CODE

STEP -1. Ask to user the length of a program.

STEP -2. Check size of RAM.

STEP -3. Check size of Virtual memory, (RAM

<VIRTUAL MEMORY).

STEP -4. Enter the user instruction address.

STEP -5. Check whether it is in RAM or in Virtual

memory.

STEP -6. Fetch the address through the constant factor

with Factorials.

STEP -7. (a*0!) + (b*1!) + (c*2!) + (d*3!)+………

STEP -8. Find out the constant values of a, b, c, d….

STEP -9. Identify the location.

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 4, April 2018

 All Rights Reserved © 2018 IJERCSE 89

STEP-10.End.

VII. ADVANTAGES OF GARCEFUL CODE

Virtual Memory using graceful code provides several

advantages over the traditional, Kernel dispatch- based

message passing. Main advantages of virtual memory

mapping communication is to perform low overhead

communication since data can move between one process

to another without message dispatching and context

dispatching. Another advantages of virtual memory

mapping is that it moves the memory buffer management

to user level. Graceful code provides such active portion

of running program with the help of virtual memory.

VIII. RESULT

Here Main memory is showing active part of a running

program and the remaining portion of program is in

virtual memory that performing a role to complete the

program.

CONCLUSION

This paper describes efficiency and implementation of

virtual memory using graceful code. The virtual memory

is a mapping that provides direct data transfer between

receiver‟s virtual address space and sender‟s virtual

address space. This code eliminates operating system

involvement in communication, supports user buffer

management, zero copy protocol, provides protection and

minimizes the software overheads associated with

implementation communication. With this work we

provide a first implementation of graceful code on

commercially available hardware platform.

With this work we prove that Virtual memory graceful

code is a fairly portable graceful code, not tried to one

particular hardware platform. A better approach of virtual

memory graceful code implementation at the cost of a

specialized network interface and more operating system

modification.

REFERENCES

[1] Rafal Kolanski, “A logic for virtual memory“,

Electronic Notes in theoretical computer science 217,

Pages 61-77, 2008.

[2] Bensoussan, R.C.Daley, ”The multics virtual

memory: concept and design“, volume 15, no.5, PP

3078,318,1 May 1972.

[3] X.Zhou, P Petrov, “Towards virtual memory

supports in realtime and memory constraint embedded

applications the interval page system”, Received on 11th

march 2009, Revised on 19 th march 2009.

[4] Archana s.sumant,Pramila M.Chawan, “Virtual

memory techniques in 2.6 kernel and challenges“, vol 2,

no., ISSN : 1793-823; 2, april 2010.

[5] S.P,Smith,, ”Modelling and Enhancing Virtual

Memory Performance in Logic Simulation”, on page

264-267,Product type-conference publication, 7-10 Nov

1988.

[6] Y.A. Khalidi,, ”Virtual Memory Supports for

Multiple page Sizes”, on pages (104-109), 14-15 oct

1993.

[7] S.JHartley, “Compile Time Progaram

Restructuring in Multiprogrammed Virtual Memory

System”, volume 14, issues:11, on page(s)-1640-1644,

November 1988.

[8] Sitaram lyer, ”Application - Assisted Physical

Memory Management”, Rice University, 6100 Main

Street, Ms-132 ,Houston, TX 77005, USA, FEBRUARY

1994.

[9] V.Delaluz et al., ”Schduler-based dram energy

power managemant”, In designing Automation

conference 39,2002.

[10] D.culler, ”Logp,performance assessment of fast

network interfaces”, IEEE MICRO.1996.

[11] Black, et. al., “Translation Lookaside

BufferConsistencyA: software Approach”,

December1988, CMU-CS-88-201.

[12] Hung-Wei Tseng, Han-Lin Li, Chia-Lin Yang,

“An Energy-Efficient Virtual Memory System with Flash

Memory as the Secondary Storage”, Low Power

Electronics and Design, ISLPED'06, 2006.

Input Output

M.M V.M M.M V.M

64 KB 1024 KB 0A 0B 2C

2D 0E 0F

0G 5H 1I

0A 0B 2C

2D 0E 2F

0G 0H 8I

2J

16 KB 256 KB 0A 0B 2C

2D 2E 4F

1G 3H

0A 0B 2C

2D 2E 4H

6I

8 KB 128 KB 0A 0B 1C

1D 1E 2F

4G 1H

0A 0B 1C

1D 1E 2H

3I

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 4, April 2018

 All Rights Reserved © 2018 IJERCSE 90

[13] M. Huang, J. Renau, S.-M. Yoo, J. Torrellas,

"The design of DEETM: a framework for dynamic energy

efficiency and temperature management", Journal of

Instruction-Level Parallelism, vol. 3, 2002.

[14] R.M. Jones, “Factors Affecting the Efficiency of

a Virtual Memory IEEE Transactions on Computers”,

Volume: C-18, Issue: 11, Nov. 1969.

[15] C. Park, J.-U. Kang, S.-Y. Park, J.-S. Kim,

"Energy-aware demand paging on NAND flash-based

embedded storages", Proceedings of the IEEE/ACM

International Symposium on Low Power Electronics and

Design, August 2004.

[16] Hiroshi Tezuka, Francis O'Carroll, Atsushi Hori,

and Yutaka Ishikawa, “Pin-down Cache: A Virtual

Memory Management Technique for Zero-copy

Communication”, IPPS/SPDP 1998. Proceedings of the

First Merged International and Symposium on Parallel

and Distributed Processing 1998.

[17] Giuseppe Psaila, ”Virtual DOM-An Efficient

Virtual Memory Representation for Large XML

Documents”, Database and Expert Systems Application,

2008. DEXA '08.

[18] Dr. Vivek Chaplot, “Virtual Memory Benefits

and Uses”, International Journal of Advance Research in

Computer Science and Management Studies, Volume 4,

Issue 9, September 2016.

[19] Yaman Cakmakci, Oguz Ergin, “Exploiting

Virtual Addressing for Increasing Reliability”, IEEE

Computer Architecture Letters, Volume: 13, Issue: 1,

Jan.-June 28 2014.

[20] Hanna Alam, Tianhao Zhang, Mattan Erez, Yoav

Etsion, ”Do-It-Yourself Virtual Memory Translation”,

ISCA ‟17, June 24-28, 2017.

[21] Pinchas Weisberg and Yair Wiseman, “Virtual

Memory Systems Should Use Larger Pages rather than

the Traditional 4KB Pages”, International Journal of

Hybrid Information Technology, Vol.8, No.8 (2015),

pp.57-68.

[22] Andon coleman, Janusz zalewski, “A study of

Real-time memory management: Evaluating operating

system‟s performance”, Automatkya/Automatics, Vol. 17,

No. 1, 2013.

