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Abstract: Interstitial Lung Disease (ILD) are a group of diseases are due to inflammation of lung tissues. Due to unknown cause of 

the ILDs international multidisciplinary consensus conference, American Thoracic Society and European Respiratory society 

proposed classification for ILDs. ILD diagnosis involves various stages of questioning and physical examination, testing, x-ray and 

CT scan. As such, the purpose of this study was to list out the methodologies for classification of ILD disease from medical images 

and discuss about their metiers and softness. In depth literature survey reveals that there are many methods for classifying ILD 

disease but very few methodologies uses machine learning issues. In this paper we are discussing about the various lung patterns 

using different methods like Local Binary Pattern in the process of using the convolutional neural networks. Such that the 

convolutional neural networks are used in the paper for comparing the various results from the various data sets that are used 

from the university hospital of Geneva and from Bern University Hospital which consists of HRCT scans and also used the datasets 

from the publicly available databases of ILD cases used in the “Near-Affine-Invariant Texture learning for lung tissue analysis 

using isotropic wavelet frames”. 

 

INTRODUCTION 

 

  Since ILDs are generally manifested as textural 

alterations in the lung parenchyma, most of the proposed 

systems employ texture classification schemes on local 

regions of interest (ROIs) or volumes of interest (VOIs), 

depending on the 2D or 3D capabilities of the CT imaging 

modality employed. By sliding a fixed-scale classifier over 

pre-segmented lung fields, an ILD quantification map of 

the entire lung is generated. The latter can be used - either 

by physicians or CAD systems – to attempt the final 

diagnosis. The main characteristics of such a system are 

the chosen feature set and the classification method. The 

first CAD systems for ILDs proposed classical feature 

extraction methods to describe 2D texture, such as first 

order gray level statistics, gray level co-occurrence 

matrices (GLCM), run-length matrices (RLM) and fractal 

analysis [41][26]. These features were later merged and 

referred as the adaptive multiple feature method (AMFM) 

[65]. AMFM was generally accepted as the state of the art 

until new systems appeared that utilized more modern 

texture description techniques and provided a new 

perspective to the problem. Such systems employed filter 

banks [81],[20],[65], morphological operations followed 

by geometric measures [82], wavelet and contourlet  

transformations [43][8], histograms of oriented gradients 

[81] and local binary patterns (LBP) [71].  

 

Moreover, some systems exploited the ability of MDCT 

scanners to achieve almost isotropic 3D sub-millimetre  

 

resolution and expanded some of the already proposed 2D 

texture feature sets into three dimensions [83],[36,[75,[61]. 

One of the latest studies on volumetric data proposed the 

use of multiscale 3D Riesz wavelet frames coupled with 

wavelet pyramids [11]. The previously presented systems 

have used hand-crafted features to describe lung tissue, 

which often fail to adapt to new data or patterns. More 

recent studies adopted learned schemes for feature 

extraction which customize the feature set to the training 

data and have achieved promising results. Most of these 

use unsupervised techniques, such as bag of features 

[32][12][68]and sparse representation models [78,45,56]. 

In these methods, a set of texture atoms or textons is 

identified by using k-means and k-SVD, on already 

described local patches. The resulting set of textons 

constitutes a problem-specific dictionary and every local 

structure in the image is represented by the closest texton 

or a linear combination of the entire set. The final global 

descriptor usually consists of the histogram of textons 

appearing in the image. Another tool which has be used for 

extracting learned features is the restricted Boltzmann 

machine (RBM). RBMs are generative artificial neural 

networks (ANNs) that are able to capture and reproduce 

the statistical structure of the input and were employed in 

[63] for learning multi-scale filters with their responses as 

the features. Regardless of whether handcrafted or learned 

features are used, it is also crucial and challenging to 

choose an appropriate classifier that can optimally handle 

the properties of the created feature space. Many different 

approaches can be found in the literature. These use linear 
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discriminant (LD) [26][20], and Bayesian [65][83], 

classifiers, k-nearest neighbours (kNN) ANN [20] [71] 

[61] [12] [82], random forest  [49]and support vector 

machines (SVM) with linear [78],[63] polynomial [81] or 

radial basis function (RBF) [8][32] kernels. Furthermore, 

multiple kernel learning classifier (m-MKL) was utilized in 

[43], while in [45], the minimum reconstruction error 

served as a classification criterion, after reconstructing the 

patch using class-specific dictionaries. Some attempts have 

recently also been made to use deep learning (DL) 

techniques and especially CNNs, after their impressive 

performance in large scale colour image classification [14]. 

Unlike other feature learning methods that build data 

representation models in an unsupervised manner, CNNs 

learn features and train an ANN classifier at the same time, 

by minimizing the classification error. Although the term 

DL implies the use of many consecutive learning layers, 

the first attempts on lung CT images adopted shallow 

architectures. 

In [31], a modified RBM was used for both feature 

extraction and classification of lung tissue, incorporating 

some features of CNNs. Weight sharing was used among 

the hidden nodes, which were densely connected to label 

(output) nodes, while the whole network was trained in a 

supervised manner, using contrastive divergence and 

gradient descent. In [64], the authors designed a CNN with 

one convolutional layer and three dense layers and trained 

it from scratch. However, the shallow architecture of the 

network cannot leverage the descriptive ability of deep 

CNNs. The pre-trained deep CNN of [14] (AlexNet) was 

used in [64] to classify whole lung slices after fine-tuning 

with lung CT data. AlexNet was designed to classify 

natural color images with input size 224×224, so the 

authors had to resize the images and artificially generate 

three. 

CNNs are feed-forward ANN inspired by biological 

processes and designed to recognize patterns directly from 

pixel images (or other signals), by incorporating both 

feature extraction and classification. A typical CNN 

involves four types of layers: convolutional, activation, 

pooling and fully-connected (or dense) layers. A 

convolutional layer is characterized by sparse local 

connectivity and weight sharing. Each neuron of the layer 

is only connected to a small local area of the input, which 

resemble the receptive field in the human visual system. 

Different neurons respond to different local areas of the 

input, which overlap with each other to obtain a better 

representation of the image. In addition, the nodes of a 

convolutional layer are grouped in feature maps sharing the 

same weights, so the entire procedure becomes equivalent 

to convolution, with the shared weights being the filters for 

each map. Weight sharing drastically reduces the number 

of parameters of the network and hence increases 

efficiency and prevents over fitting. Convolutional layers 

are often followed by a non-linear activation layer, in order 

to capture more complex properties of the input signal. 

Pooling layers are also used to subsample the previous 

layer, by aggregating small rectangular subsets of values. 

Max or average pooling is usually applied by replacing the 

input values with the maximum or the average value, 

respectively. The pooling layers reduce the sensitivity of 

the output to small input shifts. Finally, one or more dense 

layers are put in place, each followed by an activation 

layer, which produce the classification result. The training 

of CNNs is A performed similarly to that of other ANNs, 

by minimizing a loss function using gradient descent based 

methods and back propagation of the error. Although the 

concept of CNNs has existed for decades, training such 

deep networks with multiple stacked layers was achieved 

only recently. This is mainly due to their extensive 

parallelization properties, which have been coupled with 

massively parallel GPUs, the huge amounts of available 

data, and several design tricks, such as the rectified linear 

activation units (ReLU). 

 

II. RELATED WORK 

 

 In 2012, Krizhevsky et al. [14]won the Image Net Large-

Scale Visual Recognition Challenge, convincingly 

outperforming the competition on a challenging dataset 

with 1000 classes and 1.2 million images. The proposed 

deep CNN, also known as AlexNet, consists of five 

convolutional layers with ReLU activations, some of which 

are followed by max- pooling layers, and three dense 

layers with a final 1000-way softmax. The network was 

trained with stochastic gradient descent (SGD) with a 

momentum term, maximizing the multinomial logistic 

regression objective. Deep architectures permit learning of 

data representations in multiple levels of semantic 

abstraction, so even high-level visual structures like cars or 

faces can be recognized in the last layers by combining 

low-level features of the first, such as edges. Nevertheless, 

designing a deep CNN for a specific problem is not trivial, 

since a large number of mutually dependent parameter 

values and algorithmic choices have to be chosen. 

Although much research has been conducted in recent 

years on deep CNNs for colour image classification, very 

little has been done on the problems of texture recognition 

and medical image analysis. In this paper, CNN has been 

proposed for the classification of ILD patterns that exploits 

the outstanding descriptive capability of deep neural 

networks. The method has been evaluated on a dataset of 
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120 cases from two hospitals and the results confirm its 

superiority compared to the state of the art. To the best of 

our knowledge, this is the first time a deep CNN has been 

designed and trained for lung tissue characterization. 

Finally, we provide empirical rules and principles on the 

design of CNN architectures for similar texture 

classification problems. 

 

Lung Texture Analysis in the Literature:  

 State of the Art A wide range of features have been 

proposed for characterizing various lung tissue patterns 

associated with chronic obstructive pulmonary diseases 

(COPDs) and ILDs [1]: 

1) gray-level histograms 

(GLH)[38],[70],[3],[5],[6],[9],[10],[19],[21],[28],[44],[46],

[58],[66],[74],[76],[84]; 

2) Mathematical morphology and shape [38], 

[19],[21],[58];  

3) gray-level co-occurrence matrices (GLCM) [70], [58, 

[66], [74], [84], [19,21,28,76]; 

 4) run length (RLE) [70], [28], [58], [66], [84],[76] 

5) filter banks and wavelets 

[44],[46],[3],[5],[6],[9],[10],[17],[19],[21],[22],[34] 

6) Others such as fractals and local binary patterns (LBPs)] 

[66],[46],[51],[84],[76] 

 The heterogeneous feature group composed of GLH, RLE, 

and GLCM was used in most of the studies 

[70],[19],[21],[28],[58],[74]. A more comprehensive 

review of the techniques used for lung tissue categorization 

in the literature along with qualitative evaluations can be 

found in [1]. Although being able to well describe the lung 

tissue patterns, the performance of features derived from 

GLCM and RLE strongly depends on the underlying 

parameters (i.e., scales and directions). Most of the texture 

features used in the literature in lung texture analysis are 

modelling similar information: the spatial periodicity and 

scales contained in the images (GLCM, Gabor filters, 

wavelets, LBPs, and so on). The question is, which one 

characterizes the patterns best and is the most adaptable to 

the needs of lung tissue analysis in HRCT imaging. 

Although not being the most common in the state of the art 

of computer-aided diagnosis (CAD) in HRCT imaging of 

the chest, filtering techniques have several desirable 

properties. First, they are providing continuous responses 

to transient patterns in images. This is not the case for 

GLCMs that are based on the sum of occurrences of pixel 

pairs. GLCMs are as a consequence not able to 

characterize the similarity between series of contiguous 

pixels, which are often carrying important information in 

medical images. Filtering allows us to seek for specific 

features in the images (i.e., edge or ridge detection) by 

modelling the shape of the filters either in the spatial or in 

the frequency domain. Wavelet transforms (WTs), which 

are implemented as filter banks, have the desirable 

property of being multi scale and thus allow covering the 

frequency domain (scale covariance). Filtering techniques 

and translation-invariant wavelets offer an over complete 

feature set able to fit most of the texture functions under 

the condition that they efficiently derive features from the 

coefficients, being perfectly complementary to the 

measures of density using GLH. The specific texture 

signatures of the lung tissue patterns can hardly be 

described by deterministic methods as intra class variations 

are very high due to the influence of factors such as the age 

of the patient, smoking history, and extend of the disease. 

Highly flexible texture modelling is required to catch 

subtle texture signatures of a given lung tissue pattern. In 

particular, invariance of the texture descriptors to affine 

properties (i.e., translation, rotation, and scale) is desirable 

to obtain a system that is able to impartially learn any 

texture appearance independently of prevailing 

localizations, orientations, or sizes. The main research 

contribution, is the development of a near-affine-invariant 

set of texture features (translation- and rotation-invariant as 

well as scale covariant) based on the WT. The isotropic 

properties of poly-harmonic B-spline wavelets [25], the 

scale-covariant properties of the quincunx sub sampling, 

and the translation invariance of redundant frame 

transforms [57], [30].We investigate the ability of the 

proposed wavelet-based texture features to discriminate 

among the classes of healthy and pathological lung tissue 

types in HRCT images. GLHs model a complementary 

information corresponding to the density of the structures 

in CT imaging and are thus used along with WTs. 

The primary diagnostic tool for COPD is spirometry by 

which various pulmonary function tests (PFTs) are 

performed [39]. However, PFTs have a low sensitivity to 

emphysema and are not capable of detecting early stages of 

COPD [37]. Another diagnostic tool that is gaining more 

and more attention is computed tomography (CT) imaging. 

CT is a sensitive method for diagnosing emphysema, 

assessing its severity, and determining its subtype, and 

both visual and quantitative CT assessment are closely 

correlated with the pathological extent of emphysema [59]. 

In this study, we focus on the assessment of emphysema in 

CT images. Emphysema lesions, or bullae, are visible in 

CT images as areas of abnormally low attenuation values 

close to that of air. In CT, emphysema can be classified 

into three subtypes, or patterns, and we will adopt the 

naming and definitions used in Webb et al. [77]. These 

subtypes are the following: cSentrilobular emphysema 

(CLE), defined as multiple small low-attenuation areas; 
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paraseptal emphysema (PSE), defined as multiple low-

attenuation are as in a single layer long the pleura often 

surrounded by interlobular septa that is visible as thin 

white walls; and panlobular emphysema (PLE) ,defined as 

a low-attenuation lung with fewer and smaller pulmonary 

vessels. Examples of CLE and PSE, as well as normal 

tissue (NT). Common computerized approaches to 

emphysema quantification in CT are based on the 

histogram of CT attenuation values, and different 

quantitative measures of the degree of emphysema can be 

derived from this histogram. The most common measure is 

the relative area of emphysema (RA), also referred to as 

emphyse main dexor density mask [59],which measures 

the relative amount of lung parenchyma pixels that have 

attenuation values below a certain threshold. Usually, 

thresholds in the range to Hounsfield units (HU) are used. 

Measures based on the attenuation histogram disregard the 

information present in the morphology of the emphysema 

subtypes such as shape and size distribution of bullae. This 

was exemplified in a recent clinical study that reported 

discrepancies between visual scoring and RA for assessing 

the cranio caudal distribution of the three emphysema 

subtypes [73]. One way to objectively characterize the 

emphysema morphology is to describe the local image 

structure using texture analysis techniques [13], [54]. 

Uppaluri et al. introduced the idea of classifying 

emphysema in lung CT images using texture features [67]. 

Several authors followed this idea and classified regions of 

interest (ROIs) of various lung disease patterns using 

different texture features, mostly measures on gray-level 

co-occurrence matrices(GLCM), gray-level run-length 

matrices (GLRLM), and on the attenuation histogram, and 

different classifiers [65],[7] ,[33], [35], 

[28],[52],[53],[60],[80],[84]. Other examples of texture 

features used in the lung tissue classification literature are: 

the gray-level difference method [52],[53]; discrete 

wavelet frame decomposition using third-order B-splines 

[7]; convolving with partial derivatives of the Gaussian and 

the Laplacian of the Gaussian [33],[35]; gradient 

magnitude [80]; and fractal dimension  [67],[65],[84]. In 

some cases, shape, or geometric, measures are also 

included in conjunction with the texture features [60], [33], 

[84]. Most studies use a mix of rotation invariant and 

rotation variant texture features, whereas the texture 

features used in this study are solely rotation invariant. 

Most of the studies on lung texture classification have one 

or several explicit emphysema classes [67],[65],[60], 

[84],[28], [52],[53],[80]. Multiple emphysema classes are 

defined by subdividing according to disease severity [84], 

[80] or emphysema morphology [28], [52], [53]. Chabat et 

al. discriminate between CLE and PLE [28], whereas 

Prasad et al. distinguish between different stages of 

emphysema, ranging from diffuse to bullous emphysema 

[52], [53]. The study described in this paper has two 

emphysema classes defined based on morphology, namely, 

CLE and PSE. PLE is not considered since only 2 out of 39 

subjects had PLE as leading pattern in the data used in the 

experiments. The data come from a population of (ex-) 

smokers, and PLE is known to be more prevalent in 

subjects with -antitrypsin deficiency than in subjects with 

smoking-related COPD [37]. A trained classifier can be 

used for quantification by classifying all pixels in the lung 

field. In [65], [60], [33], [84], [80,52,53]  the full lung is 

classified either by labelling complete ROIs [65], [33], [84] 

or by labelling individual pixels [60], [80], [52], [53]. Xu 

et al. report the percentage of different disease patterns 

present in a few subjects, but these quantitative measures 

are not evaluated further [84]. Park et al. quantify 

emphysema by a weighted sum of relative emphysema 

class areas [80], and it is to our knowledge the only 

emphysema based quantitative study on a group of subjects 

in the lung CT texture analysis literature. This paper 

proposes two new ideas in the area of lung texture analysis 

in CT images. The specific application is emphysema 

quantification, but the ideas are also applicable to other 

lung disease patterns. Preliminary versions of the study 

presented here appeared in and [47], [48]. The first idea is 

to use local binary patterns (LBPs) originally formulated 

by Ojala et al. [72] as lung texture features. LBP unify 

structural and statistical information by a histogram of LBP 

codes that correspond to microstructures in the image at 

different scales. LBP have shown promising results in 

various applications in computer vision and have 

successfully been applied in a small number of other 

medical image analysis tasks, e.g., in mammographic mass 

detection [16] and magnetic resonance image analysis of 

the brain [24].  

The second idea is to fuse the posterior probabilities 

obtained from a classification of all pixels in the lung field 

into quantitative measures of emphysema severity. 

Texture-based classification allows for quantification of 

different emphysema subtypes, which may be important in 

phenotyping emphysema for increased understanding of 

COPD. Furthermore, texture features may be less 

influenced by inspiration level and noise compared to, 

e.g.,RA, which uses intensity in single pixels. In [48], this 

approach agrees well with the outcome of PFTs, achieving 

a significant correlation. Two fusion schemes are 

considered; mean class posterior (MCP) and relative class 

area (RCA). The second fusion scheme, RCA, is related to 

the fusion scheme in [80] that uses a weighted sum of 

RCAs. The difference is that we consider each RCA 
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individually. The proposed system is evaluated in two 

ways; ROI classification and emphysema quantification on 

subject level. A dataset comprising 2-D high-resolution CT 

(HRCT) slices with manually annotated ROIs is used for 

these purposes. The LBP features are compared to two 

other sets of features, one based on a Gaussian filter bank 

(GFB) and one comprising measures on GLCM, GLRLM, 

and the attenuation histogram. 

 

III. DATASETS 

 

The dataset used for training and evaluating the proposed 

method was made using two databases of ILD CT scans 

from two different Swiss university hospitals: The first is 

the publicly available multimedia database of ILDs from 

the University Hospital of Geneva [2], which consists of 

109 HRCT scans of different ILD cases with 512×512 

pixels per slice. Manual annotations for 17 different lung 

patterns are also provided, along with clinical parameters 

from patients with histological proven diagnoses of ILDs. 

The second database was provided by the Bern University 

Hospital, ―Inselspital‖, and consists of 26 HRCT scans of 

ILD cases with resolution 512×512. The scans were 

produced by different CT scanners with slightly different 

pixel spacing so a pre-processing step was applied which 

rescaled all scans to match a specific spacing value (i.e. 0.4 

mm). However, the use of different reconstruction kernels 

by the scanners, still remains an open issue that 

complicates the problem even further. The image intensity 

values were cropped within the window [-1000, 200] in 

HU and mapped to [0, 1]. Experienced radiologists from 

the ―Inselspital‖ annotated (or re-annotated) both databases 

by manually drawing polygons around the six most 

relevant ILD patterns, namely GGO, reticulation, 

consolidation, micro nodules, honeycombing and a 

combination of GGO and reticulation. Healthy tissue was 

also added, leading to 7 classes. The annotation focused on 

typical instances of the considered ILD patterns, excluding 

ambiguous tissue areas that even experienced radiologists 

find difficult to classify. Hence, tissue outside the polygons 

may belong to any pattern, including that considered. 

Moreover, the annotators tried to avoid the Broncho 

vascular tree which (in a complete CAD system) should be 

segmented and removed, before applying the fixed-scale 

classifier. Annotation of the lung fields was also performed 

for all scans. 

The considered classes appeared in the annotations of 94 

out of the 109 scans of the Geneva database, to which the 

26 cases from ―Inselspital‖ were added, giving a total of 

120 cases. On the basis of the ground truth polygons of 

these cases, this extracted in total 14696 non-overlapping 

image patches of size 32×32, unequally distributed across 

the 7 classes. Each pattern provides the number of ground 

truth polygons, the average and standard deviation of their 

area, the number of cases in which it was annotated and the 

number of extracted patches. The healthy pattern was only 

annotated in 8 cases, which however proved to be enough, 

since its texture does not present large deviations. It has to 

be noted that one case may contain multiple types of 

pathologies, so the sum of cases is larger than 120. The 

patches are entirely included in the lung field and have an 

overlap with the ground truth polygons of at least 80%. For 

each class, 150 patches were randomly selected for the test 

and 150 for the validation set. The choice of 150 was made 

based on the patch number of the rarest class (i.e. 

honeycombing) leaving about 50% of the patches for 

training. On the remaining patches, data augmentation was 

employed in order to maximize the number of training 

samples and equalize, at the same time, the samples’ 

distribution across the classes. Data augmentation has often 

been employed in image classification, in order to increase 

the amount of training data and prevent over-fitting [14]. 

To this end, 15 label-preserving transformations were used, 

such as flip and rotation, as well as the combinations of the 

two. For each class, the necessary number of augmented 

samples was randomly selected, so all classes would reach 

the training set size of the rarest class, i.e. 5008, leading to 

35056 equally distributed training patches. The CNN 

decides on the optimal architecture and configuration of a 

CNN, one should first comprehend the nature of the 

problem considered - in this case - the classification of ILD 

patterns. Unlike arbitrary objects in color images, which 

involve complex, high-level structures with specific 

orientation, ILD patterns in CT images are characterized 

by local textural features. Although texture is an intuitively 

easy concept for humans to perceive, formulating a formal 

definition is not trivial, which is the reason for the many 

available definitions in the literature [55]. Here, we define 

texture as a stochastic repetition of a few structures 

(textons) with relatively small size, compared to the whole 

region. Image convolution highlights small structures that 

resemble the convolution kernel throughout an image 

region, and in this way the analysis of filter bank responses 

has been successfully used in many texture analysis 

applications. This encourages the use of CNNs to 

recognize texture by identifying the optimal problem-

specific kernels; however some key aspects stemming from 

our definition of texture have to considered: (i) The total 

receptive field of each convolutional neuron with respect to 

the input (i.e. the total area of the original input ―seen‖ by a 

convolutional neuron) should not be larger than the 

characteristic local structures of texture, otherwise non-
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local information will be captured, which is irrelevant to 

the specific texture, (ii) since texture is characterized by 

fine grained low-level features, no pooling should be 

carried out between the convolutional layers, in order to 

prevent loss of information, (iii) each feature map 

outputted by the last convolutional layer should result in 

one single feature after pooling, in order to gain some 

invariance to spatial transformations like flip and rotation. 

Unlike color pictures that usually have high-level 

geometrical structure (e.g. the sky is up), a texture patch 

should still be a valid sample of the same class when 

flipped or rotated. Architecture: On the basis of these 

principles, we designed the network presented in Fig. 1.  

The input of the network is a 32×32 image patch, which is 

convolved by a series of 5 convolutional layers. The size of 

the kernels in each layer was chosen to be minimal, i.e. 

2×2. The use of small kernels that lead to very deep 

networks was proposed in the VGG-net [42], which was 

ranked at the top of ILSVRC 2014 challenge by employing 

3×3 kernels and up to 16 convolutional layers. Here, we go 

one step further by shrinking the kernel size even more to 

involve more non-linear activations, while keeping the 

total receptive field small enough (6×6) to capture only the 

relevant local structure of texture. Each layer has a number 

of kernels proportional to the receptive field of its neurons, 

so it can handle the increasing complexity of the described 

structures. The size of the rectangular receptive field is 2×2 

for the first layer and is increased by 1 in each dimension, 

for each layer added, leading to an area of (L+1)2 for the 

Lth layer. Hence, the number of kernels we use for the Lth 

layer is k(L+1)2, where the parameter k depends on the 

complexity of the input data and was set to 4 after relevant 

experiments. An average pooling layer follows, with size 

equal to the output of the last convolutional layer (i.e. 

27×27). The resulting features, which are equal to the 

number of features maps of the last layer i.e. f = 36k, are 

fed to a series of 3 dense layers with sizes 6f, 2f and 7, 

since 7 is the number of classes considered. The use of 

large dense layers accelerated convergence, while the 

problem of overfitting was solved by adding a dropout 

layer before each dense layer. Dropout can be seen as a 

form of bagging; it randomly sets a fraction of units to 0, at 

each training update, and thus prevents hidden units from 

relying on specific inputs [29]. 1) Activations: It is well-

known that the choice of the activation function 

significantly affects the speed of convergence. The use of 

the ReLU function f(x) = max (0,x) has been proven to 

speed up the training process many times compared to the 

classic sigmoid alternative. In this study, we also noticed 

that convolutional activations have a strong Influence on 

the descriptive ability of the network. Driven by this 

observation and after experimenting with different rectified 

activations, we propose the use of LeakyReLU  [15], a 

variant of ReLU, for activating every convolutional layer. 

Unlike ReLU, which totally suppresses negative values, 

leaky ReLU assigns a non-zero slope, thus allowing a 

small gradient when the unit is not active (Eq. 1) 

 

     ……..(1) 

 

where α is a manually set coefficient. LeakyReLU was 

proposed as a solution to the ―dying ReLU‖ problem, i.e. 

the tendency of ReLU to keep a neuron constantly inactive 

as may happen after a large gradient update. Although a 

very low negative slope coefficient (i.e. α = 0.01) was 

originally proposed, here we increase its value to 0.3, 

which considerably improves performance. Similar 

observations have also been reported in other studies [18]. 

A very leaky ReLU seems to be more resilient to 

overfitting when applied to convolutional layers, although 

the exact mechanism causing this behavior has to be 

further studied. For the dense part of the network, the 

standard ReLU activation was used for the first two layers 

and softmax on the last layer, to squash the 7dimensional 

output into a categorical probability distribution. 2) 

Training method: The training of an ANN can be viewed 

as a combination of two components, a loss function or 

training objective, and an optimization algorithm that 

minimizes this function. In this study, we use the Adam 

optimizer [23] to minimize the categorical cross entropy. 

The cross entropy represents the dissimilarity of the 

approximated output distribution (after softmax) from the 

true distribution of labels. Adam is a first-order gradient-

based algorithm, designed for the optimization of 

stochastic objective functions with adaptive weight updates 

based on lower-order moments. Three parameters are 

associated with Adam: one is the learning rate and the 

other two are exponential decay rates for the moving 

averages of the gradient and the squared gradient. After 

relevant experiments, we left the parameters to their 

default values namely, learning rate equal to 0.001 and the 

rest 0.9 and 0.999, respectively. The initialization of the 

convolutional layers was performed using orthogonal 

matrices multiplied with a scaling parameter equal to 1.1, 

while a uniform distribution was utilized for the dense 

layers, scaled by a factor proportional to the square root of 

the layer’s number of inputs [40]. The weight updates are 

performed in mini-batches and the number of samples per 

batch was set to 128. The training ends when the network 

does not significantly improve its performance on the 

validation set for a predefined number of epochs. This 
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number is set to 200 and the performance is assessed in 

terms of average f-score (F avg) over the different classes 

(Eq. 2). An improvement is considered significant if the 

relative increase in performance is at least 0.5%.  

 

 

 

 
  

3.1 ILD 

The dataset used is part of a publicly available database of 

ILD cases [4] containing HRCT images with a slice 

thickness of 1 mm. 1448 hand-drawn regions of interest 

(ROIs) were annotated in 2-D HRCT slices in a 

collaborative fashion by two radiologists with 15 and 20 

years of experience at the University Hospitals of Geneva 

(HUG). The in-plane resolution of the images is 512×512 

pixels with an inter slice gap of 10 mm. A complete 

description of the database can be found in [4].HRCT 

image series of 85 patients are used to evaluate the 

performance of the proposed approach. The hand-drawn 

ROIs are sub divided into 32×32 blocks for evaluating the 

methods. For blocks to be part of one of the tissue classes, 

at least 75% of the pixels need to be in the annotated 

region. The distributions and visual aspects of the five lung 

tissue classes are detailed in Table III. A total of 17848 

blocks were used for the evaluation. The diagnosis of each 

case was confirmed either by pathology (biopsy and 

bronchoalveolar washing) or by a laboratory/specific test. 

In some cases with an early stage of ILD, healthy tissue 

was annotated in normal parts of the lungs to increase the 

amount of healthy annotated tissue, as finding HRCT scans 

of healthy patients was difficult. 

In order to estimate the generalization performance of the 

classification of 32×32 blocks, a leave-one-patient-out 

cross validation (LOPO CV) is used. LOPO CV splits 

training and testing sets based on patients and has several 

advantages when compared to other validation methods 

[50]. First, when compared to the classical leave-one-out 

(LOO) CV, it ensures that all ROIs belonging to the same 

patient are contained in the same fold and thus do not 

allow to train and test with identical patients. This situation 

corresponds to the clinical routine where the CAD system 

is trained using the entire database and unseen ROIs from 

an unknown patient are classified. Second, LOPO has the 

advantage of LOO where global experience is perfectly 

reproducible when compared to N-folds-fold CV because 

no random draw is carried out with LOO to create the 

folds. This is desirable when searching for optimal 

parameters where the variation of the evaluation conditions 

introduced by a random draw of the folds in N-folds–fold 

CV can lead to an inappropriate choice of parameters, 

especially when the number of patients is fairly low for 

some classes. At last, the computational cost is affordable 

with N-folds equals to the number of cases N-cases. The 

number of classifiers to train is equal to N-cases. 

The data come from an exploratory study carried out at the 

Department of Respiratory Medicine, Gentofte University 

Hospital [69] and consist of CT images of the thorax 

acquired using General Electric (GE) equipment (Light 

Speed QX/i; GE Medical Systems, Milwaukee, WI, USA) 

with four detector rows. A total of 117 HRCT slices were 

acquired by scanning 39 subjects in the upper, middle, and 

lower lung. The CT scanning was performed using the 

following parameters: in-plane resolution 0.78 0.78 mm, 

slice thickness 1.25 mm, tube voltage 140 kV, and tube 

current 200 mAs. The slices were reconstructed using a 

high-spatial-resolution (bone) algorithm.  

Prior to CT imaging, the subjects underwent PFTs, and 

both the forced vital capacity (FVC) and the forced 

expiratory volume in one second were measured [62]. is 

adjusted for age, sex, and height by dividing with a 

predicted value according to these three parameters, 

thereby obtaining % . The 39 subjects were divided into 

three groups: nine healthy life long non-smokers (referred 

to as never smokers), ten smokers without COPD (referred 

to as healthy smokers), and 20smokers diagnosed with 

moderate or severe COPD (referred To as COPD smokers). 

The COPD diagnosis was based on the recorded PFTs and 

done according to the Global Initiative for Chronic 

Obstructive Lung Disease criteria [39] as follows: no 

COPD, defined as FEV1 /FVC >= 0.7 and FEV1 % pred 

>= 80%; moderate to severe COPD, defined as FEV1 /FVC 

<  0.7 and  30% <= FEV1% pred < 80%. Of the 39 

subjects, 19 were women and 20 were men. An 

experienced chest radiologist and a CT experienced 

pulmonologist each assessed the leading pattern, either NT, 

CLE, PSE, or PLE, in each of the 117 slices. Overall, the 

observers agreed in 53% of the slices, and they agreed on 

the emphysema class in 60% of slices where both decided 

….. (3) 

 

…………… (2) 
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on an emphysema pattern. 168 non overlapping ROIs were 

annotated manually in 25 of the subjects, representing the 

three classes: NT (59 observations), CLE (50 

observations), and PSE (59 observations). The NT ROIs 

were annotated in never smokers, and the CLE and PSE 

ROIs were annotated in healthy smokers and COPD 

smokers within the area(s) of the leading emphysema 

pattern by approximately marking the centre pixel of the 

emphysematous area. Square ROIs of a given width 

centred on the marked pixel were subsequently extracted. 

PLE was excluded due to underrepresentation in the data, 

only two subjects had PLE as leading pattern. Therefore, 

we are dealing with the three classes in all the experiments. 

 

3.2Multi-Detector CT (MDCT) 

A pilot clinical case sample was acquired conisting of 30 

MDCT scans corresponding to 5 normal paients and 25 

patients diagnosed with IP secondary to connective tissue 

diseases, radio logically manifested with ground glass, 

reticular and honeycombing patterns (Fig. 1). MDCT scans 

were obtained with a Multi-slice (16x) CT (Light Speed, 

GE), in the Department of Radiology at the University 

Hospital of Patras, Greece. Acquisition parameters of tube 

voltage, tube current and slice thickness were 140 kVp, 

300 mA and 1.25 mm, respectively. The image matrix size 

was 512x512 pixels with average pixel size of 0.89 mm. 

The MDCT scans were used to extract VOIs for training 

the classifiers employed for IP pattern identification and 

characterization. These sets consisted of 1173 cubic VOIs 

of variable size, defined by an expert radiologist, 

exploiting a home developed graphical user interface, 

representing patterns corresponding to reticular (458), 

ground glass opacities (195) honeycombing (249) and 

normal LP ( 271). 

 

Figure 1 Architecture of CNN for lung pattern classification. Value of k is set to 4 

  

IV. EXPERIMENTS 

 

The ILD classifications are based on the training, 

validation and testing methods. The training is provided for 

the sample data sets or on the training data sets. The 

validation is used for the tuning of the parameters. The test 

and the test results are used for assessing the performance 

of the system. F-Score is used as the primary measure over 

the different classes (Eq 2). The accuracy is computed 

using the correctly classified samples over total number of 

samples (Eq 3). Due to the use of different patterns, 

datasets the performances are not comparable. But the 

datasets may affect the performance of the methods and 

not relative performance rank.  

 

Theano  [27] framework was implemented while for 

AlexNet and VGGNet we used Caffe [79]. For lung pattern 

classification, the methods which did not use the  

convolutional neural network used python and 

MATHLAB.  

 

The results from various comparison are:  

This uses 3 parts for obtaining results  

1. Tuning of hyper-parameters  

2. Comparison with state of the art 

3. Analysis of the system performance 

  

Turing of hyper-parameters show choices for the 

architecture and training procedure. 

 

  

Table 1 



ISSN (Online) 2394-2320 
 

International Journal of Engineering Research in Computer Science and Engineering  

(IJERCSE)  

Vol 5, Issue 4, April 2018 

 

All Rights Reserved © 2018 IJERCSE                   119  

 

Dropout 

fraction 

Pooling 

type 

Pooling 

percentage 

Kernel 
number 

multiplier 

(k) 

Number of 
kernels for 

Lth layer 

Number 

of conv 

layers 

Kernel 

size 

Input 

scale 

factor 

Activation 

function 

Testing 

Favg 

# Epochs 

×  Epoch 

time 

0 Avg 100% 4 k(L+1)2 5 2 X 2 1 LReLu(0.3) 0.7908 90 X 11s 

0.5 Max 100% 4 k(L+1)2 5 2 X 2 1 LReLu(0.3) 0.8105 69 X 11s 

0.5 Avg 50% 4 k(L+1)2 5 2 X 2 1 LReLu(0.3) 0.7895 249 X 11s 

0.5 Avg 25% 4 k(L+1)2 5 2 X 2 1 LReLu(0.3) 0.7452 286 X 12s 

0.5 Avg 100% 4 17 5 2 X 2 1 LReLu(0.3) 0.8446 300 X 12s 

0.5 Avg 100% 4 36 5 2 X 2 1 LReLu(0.3) 0.8508 386 X 32s 

0.5 Avg 100% 3 k(L+1)2 5 2 X 2 1 LReLu(0.3) 0.8266 427 X 7s 

0.5 Avg 100% 5 k(L+1)2 5 2 X 2 1 LReLu(0.3) 0.8425 362 X 14s 

0.5 Avg 100% 4 k(L+1)2 7 2 X 2 1 LReLu(0.3) 0.8432 295 X 23s 

0.5 Avg 100% 4 k(L+1)2 6 2 X 2 1 LReLu(0.3) 0.8559 215 X 18s 

0.5 Avg 100% 4 k(L+1)2 4 2 X 2 1 LReLu(0.3) 0.8443 372 X 6s 

0.5 Avg 100% 4 k(L+1)2 7 2 X 2 1 LReLu(0.3) 0.8432 295 X 23s 

 

  

Table 1 provides classification of the performance of the 

different configurations on network’s architecture and the 

training time required. The k multiplier is used for 

identification of the number of kernels for which 4 is used 

as optimal choice for performance and efficiency.  

  
Table 2 Performance of the proposed CNN with different training 

options 

Optimizer  Loss 

Function 

FFavg Accuracy  Epoch 

SGD Cross-

entropy 

0.834 0.8428 333 

AdaGrad Cross-

entropy 

0.8219 0.8228 257 

Adam MSE 0.8499 0.8523 155 

Adam Cross-

entropy 

0.8547 0.8561 386 

  

Table 2 depicts the usage of different optimizers and loss 

function for training of the CNN.  

 

Comparison with the state of the art compares CNN with 

other methods that are best using different classifiers and 

features. Every author and parameter are tuned using trial 

and error procedure. The below table 3 shows the 

comparison 

 

  

 

 

Table 3 Comparison of the proposed with state-of-the-art methods 

using handcrafted features 

Method Features Classifie

r 

Favg Accura

cy 

Gangeh Intensity SVMRB

F 

0.712

7 

0.7152 

Sorensen LBP 

+histogra

m 

kNN 0.732

2 

0.7333 

Anthimopoulos Local 

DCT + 

histogra

m 

RF 0.778

6 

0.7809 

PROPSED 

METHOD USING 

DEEP 

CONVOLVUTION

AL NEURAL 

NETWORK 

CNN 

 

0. 

8547 

0.8561 
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